AAM  >> Vol. 5 No. 2 (May 2016)

    一类具有Leakage时滞的反应扩散神经网络在间歇控制下的指数同步
    Exponential Synchronization of Reaction-Diffusion Neural Networks with Time Delay in the Leakage Term Based on Periodically Intermittent Control

  • 全文下载: PDF(1275KB) HTML   XML   PP.298-309   DOI: 10.12677/AAM.2016.52038  
  • 下载量: 517  浏览量: 1,837   国家自然科学基金支持

作者:  

王丽丽,徐瑞:军械工程学院应用数学研究所,河北 石家庄

关键词:
指数同步Leakage时滞反应扩散间歇控制Exponential Synchronization Leakage Delay Spacial Diffusion Periodically Intermittent Control

摘要:
本文研究了一类具有混合时滞和Leakage时滞的反应扩散神经网络的指数同步问题。通过构造适当的Lyapunov泛函,结合不等式分析技巧,得到了系统在周期性间歇控制下实现指数同步的条件,且这些条件既依赖于Leakage时滞,又依赖于扩散系数和扩散空间。本文所研究的模型更具有一般性,所得结果去掉了对时滞的限制,降低了同步条件的保守性。最后通过数值模拟说明了所得结论的可行性。

In this paper, the exponential synchronization of neural networks with spacial diffusion, mixed time-varying delays and leakage delay is investigated. By means of Lyapunov functional technique and some inequality techniques, exponential synchronization criteria dependent on leakage delay, diffusion coefficients and diffusion space are derived for the neural networks based on periodically intermittent control. The model studied in this paper is more general. The results obtained remove the restriction on the time-delays and are less conservative. Numerical simulations are carried out to illustrate the feasibility of the proposed theoretical results.

文章引用:
王丽丽, 徐瑞. 一类具有Leakage时滞的反应扩散神经网络在间歇控制下的指数同步[J]. 应用数学进展, 2016, 5(2): 298-309. http://dx.doi.org/10.12677/AAM.2016.52038

参考文献

[1] Dai, D. and Ma, X.K. (2011) Chaos Synchronization by Using Intermittent Parametric Adaptive Control Method. Physics Letters A, 288, 23-28.
http://dx.doi.org/10.1016/S0375-9601(01)00521-7
[2] Yahyazadeh, M., Noei, A.R. and Ghaderi, R. (2011) Synchronization of Chaotic Systems with Known and Unknown Parameters Using a Modified Active Sliding Mode Control. ISA Transactions, 50, 262-267.
http://dx.doi.org/10.1016/j.isatra.2010.10.009
[3] Li, X.D. and Song, S.J. (2014) Research on Synchronization of Chaotic Delayed Neural Networks with Stochastic Perturbation Using Implusive Control Method. Communications in Nonlinear Science and Numerical Simulation, 19, 3892-3900.
http://dx.doi.org/10.1016/j.cnsns.2013.12.012
[4] Huang, J.J., Li, C.D. and Han, Q. (2009) Stabilization of De-layed Chaotic Neural Networks by Periodically Intermittent Control. Circuits, Systems, and Signal Processing, 28, 567-579.
http://dx.doi.org/10.1007/s00034-009-9098-3
[5] Gan, Q.T. (2012) Exponential Synchronization of Stochastic Cohen-Grossberg Neural Networks with Mixed Time- Varying Delays and Reaction-Diffusion via Periodi-cally Intermittent Control. Neural Networks, 31, 12-21.
http://dx.doi.org/10.1016/j.neunet.2012.02.039
[6] Hu, C., Yu, J., Jiang, H.J. and Teng, Z.D. (2010) Exponential Stabilization and Synchronization of Neural Networks with Time-Varying Delays via Periodically Intermittent Control. Nonlinearity, 23, 2369-2391.
http://dx.doi.org/10.1088/0951-7715/23/10/002
[7] Hu, C., Yu, J., Jiang, H.J. and Teng, Z.D. (2012) Exponential Synchronization for Reaction-Diffusion Networks with Mixed Delays in Terms of p-Norm via Intermittent Control. Neural Networks, 31, 1-11.
http://dx.doi.org/10.1016/j.neunet.2012.02.038
[8] Xing, J.J., Jiang, H.J. and Hu, C. (2013) Exponential Syn-chronization for Delayed Recurrent Neural Networks via Periodically Intermittent Control. Neucomputing, 82, 122-129.
http://dx.doi.org/10.1016/j.neucom.2013.01.041
[9] Zhou, P.P. and Chen, F.Q. (2011) Existence of Periodic Solutions for Bidirectional Associative Memory Neural Networks with Distributed Delays. Acta Analysis Functionalis Applicata, 13, 145-153.
[10] Hu, C., Jiang, H.J. and Teng, Z.D. (2010) Impulsive Control and Synchronization for Delayed Neural Networks with Reaction-Diffusion Terms. IEE Transactions on Neural Networks, 21, 67-81.
http://dx.doi.org/10.1109/TNN.2009.2034318
[11] Mao, X. (2006) Stochastic Differential Equations and Appli-cations. Horwood Publication, Chichester.