AAC  >> Vol. 1 No. 2 (November 2011)

    Progress on the Electrochemical Co-Precipitation Determination for Trace Amounts of Heavy Metal Ions

  • 全文下载: PDF(239KB) HTML   XML   PP.7-11   DOI: 10.12677/aac.2011.12002  
  • 下载量: 2,758  浏览量: 13,030   国家自然科学基金支持



Heavy Metal Ions; Trace Amount; Modified Electrode; Electrochemical Co-Precipitation



Description on the electrochemical determination of heavy metal ions in recent years was pre-sented in this paper. Research of electrochemical co-precipitation detection of trace amounts of heavy metal ions was high lightly introduced. The method was that separation, enrichment and electrochemical detection of trace heavy metal ions were simultaneously and synchronously carried through and it shows high selecti- vity, sensitivity and stability. And thirty-six literatures were cited.

刘敏, 王广凤, 方宾. 电化学共沉淀分离测定痕量重金属离子的研究进展[J]. 分析化学进展, 2011, 1(2): 7-11. http://dx.doi.org/10.12677/aac.2011.12002


[1] X. X. Zhu, A. M. Kriegel, C. A. Boustany, et al. Single-Chain variable fragment (scFv) antibodies optimized for environmental analysis of uranium. Analytical Chemistry, 2011, 83(10): 3717- 3724.
[2] G. Aragay, J. Pons and A. Merko. Recent trends in macro-, micro-, and nanomaterial-based tools and strategies for heavy metal detection. Chemical Reviews, 2011, 111(5): 3433-3458.
[3] H. Tokuyama, T. Iwama. Temperature-swing solid-phase extrac- tion of heavy metals on a poly(N-isopropylacrylamide) hydrogel. Langmuir, 2007, 23(26): 13104-13108.
[4] A. O. W. Leung, N. S. Duzgoren-Aydin, K. C. Cheung, et al. Heavy metals concentrations of surface dust from e-waste recy- cling and its human health implications in southeast China. En- vironmental Science and Technology, 2008, 42(7): 2674-2680.
[5] T. Chen, X. M. Liu, X. Li, et al. Heavy metal sources identification and sampling uncertainty analysis in a field-scale vegetable soil of Hangzhou, China. Environmental Pollution, 2009, 157(3): 1003-1010.
[6] M. B. Arain, T. G. Kazi, J. A. Baig, et al. Determination of arsenic levels in water, sediment and foodstuff from selected area of sindh, pakistan: Estimation of daily dietary intake. Food and Chemical Toxicology, 2009, 47(1): 242-248.
[7] S. Seoyoun, J. Jyongsik. Thiol containing polymer encapsulated magnetic nanoparticles as reusable and efficiently separable ad- sorbent for heavy metal ions. Chemical Communications, 2007, 17(6): 4230-4232.
[8] E. Margui, K. V. Meel, R. V. Grieken, et al. Method of the de- termination of Pd-catalyst residues in active pharmaceutical in- gredients by means of high-energy polarized-beam energy dis- persive X-Ray fluorescence. Analytical Chemistry, 2009, 81(4): 1404-1410.
[9] O. Chailapakul, S. Korsrisakul, W. Siangproh, et al. Fast and si- multaneous detection of heavy metals using a simple and reliable microchip-electrochemistry route: An alternative approach to food analysis. Talanta, 2008, 74(4): 683-689.
[10] G. W. Li, L. H. Zhang, Z. W. Li, et al. PAR immobilized co- lorimetric fiber for heavy metal ion detection and adsorption. Journal of Hazardous Materials, 2010, 177(3): 983-989.
[11] 李启隆. 有机试剂在极谱吸附波中的应用[J]. 冶金分析, 1991, 11(2): 27-29.
[12] 张军红, 刘道杰. 有机试剂在络合吸附波中的应用[J]. 冶金分析, 2003, 23(6): 18-23.
[13] H. Ju, D. Leech. Electrochemical study of a metallothionein mo- dified gold disk electrode and its action on Hg2+ cations. Journal of Electroanalytical Chemistry, 2000, 484(1): 150-152.
[14] Y. Oztekin, Z. Yazicigil, A. Ramanaviciene and A. Ramanavicius. Ano- dic stripping voltammetric determination of copper(II) usinga functionalized carbon nanotubes paste electrode modified with crosslinked chitosan. Sensors and Actuators B: Chemical, 2010, 151(1): 1-12.
[15] L. Jiang, Y. Wang, J. W. Ding, et al. An ionophore-Nafion mo- dified bismuth electrode for the analysis of cadmium(II). Electrochemistry Communications, 2010, 12(3): 202-205.
[16] X. S. Ren, Q. H. Xu. Highly sensitive and selective detection of mercury ions by using oligonucleotides, DNA intercalators, and conjugated polymers. Langmuir, 2009, 25(1): 29-31.
[17] Y. Liu, P. Liang, Guo L. Nanometer titanium dioxide immobili- zed on silica gel as sorbent for preconcentration of metal ions prior to their determination by inductively coupled plasma ato- mic emission spectrometry. Talanta, 2005, 68(1): 25-30.
[18] J. Toh, X. B. Zuo, H. N. Wu, et al. Mechanism of mercury dete- ction based on interaction of single-strand DNA and hybridized DNA with gold nanoparticles. Talanta, 2010, 82(6): 1642-1646.
[19] B. W. Yang, Q. J. Gong, L. P. Zhao, et al. Development of a three- stage system for the treatment and reclamation of wastewater containing nano-scale particles. Desalination, 2011, 5(1): 1-5.
[20] L. T. Jin, H. Xu, L. P. Zeng, et al. Microwave-irradiated synthe- sized platinum nanoparticles/carbon nanotubes for oxidative de- termination of trace arsenic(III). Electrochemistry Communications, 2008, 10 (3): 551-554.
[21] M. R. Ganjali, N. Motaker-Kazami, F. Faridbod, et al. Separation and preconcentration of trace level of lead in one drop of blood sample by using graphite furnace atomic absorption spectrome- try. Journal of Hazardous Materials, 2010, 173(3): 415-419.
[22] H. Zhao, Y. Jiang, Y. R. Ma, et al. Poly(2-amino-4-thiazoleacetic ac-id)/multiwalled carbon nanotubes modified glassy carbon elec- trodes for the electrochemical detection of copper(II). Electro- chimica Acta, 2010, 55(6): 2518-2521.
[23] S. J. Xing, H. Xu, J. S. Chen, et al. Nafion stabilized silver nano- particles modified electrode and its application to Cr(VI) detec- tion. Journal of Electronalytical Chemistry, 2011, 652(1): 60-65.
[24] B. Fang, M. Liu, G. F. Wang, C. H. Zhang, et al. The study on Separating, enriching and determination of trace amount of Hg2+ synchronously. Analytical Methods, 2011, 3(5): 865-871.
[25] J. G. Lawless, M. D. Hawley. Electrochemical oxidation of cup- ferron. Analytical Chemistry, 1968, 40(6): 948-951.
[26] 李启隆, 胡劲波. 铜铁试剂在络合吸附波中的应用[J]. 冶金分析, 1994, 14(1): 39-43.
[27] M. Liu, Y. H. Feng, C. H. Zhang, et al. Electrochemical determi- nation of copper (Ⅱ) using Co-poly (Cupferron and β-naphthol)/ gold nanoparticles modified glassy carbon electrodes. Analytical Methods, 2011, 3(6): 1440-1446.
[28] M. Sonmez, C. H. Ozyoruk, A. Yildiz, et al. Determination of Hg2+ on poly(vinylferrocenium) (PVF+)-modified platinum electrode. Talanta, 2009, 78(3): 405-409.
[29] J. Q. Lu, X. W. He, X. S. Zeng, et al. Voltammetric determination of mercury (II) in aqueous media using glassy carbon electrodes modified with novel calyx [4] arene. Talanta, 2003, 59(3): 553-560.
[30] H. Zejli, P. Sharrock, J. L. Cisneros, et al. Voltammetric deter- mination of trace mercury at a sonogel-carbon electrode modi- fied with poly-3-methylthiophene. Talanta, 2005, 68(1): 79-81.
[31] I. K. Tonle, E. Ngameni and A. Walcarius. Preconcentration and voltammetric analysis of mercury (II) at a carbon paste electrode modified with poly-3-methylthiophene. Talanta, 2005, 68(1): 79- 81.
[32] M. Etiene, J. Bessiere and A. Wlcarius. Voltammetric detection of copper at a carbon paste electrode containing an organically modified silica. Sensors and Actuators B: Chemical, 2001, 76(2): 531-538.
[33] B. C. Janegitz, L. H. Marcolino-Junior, S. P. Campana-Filh, et al. Anodic stripping voltammetric determination of copper (II) us- ing a functionalized carbon nanotubes paste electrode modified with crosslinked chitosan Sensors and Actuators B: Chemical, 2009, 142(1): 260-266.
[34] M. Lin, M. Cho, W. S. Choe, et al. Electrochemical detection of copper ion using a modified copolythiophen electrode. Electro- chimica Acta, 2009, 54(6): 7012-7017.
[35] S, Mustafa, D. Ayse. Determination of some heavy metals in food and environmental samples by flame atomic absorption spe- ctrometry after coprecipitation. Food Chemical Toxicology, 2011, 49(6): 1242-1248.
[36] R. Sonia, G. Ana, G. Edgar, et al. Use of CeO2, TiO2 and Fe3O4 nanoparticles for the removal of lead from water: Toxicity of nanoparticles and derived compounds. Desalination, 2011, 277 (1): 213-220.