AAM  >> Vol. 1 No. 2 (November 2012)

    含裂纹功能梯度材料热接触的奇异积分方程方法
    Singular Integral Equation Method for Thermal Contact Problem of FGM with Crack

  • 全文下载: PDF(1519KB)    PP.49-58   DOI: 10.12677/aam.2012.12007  
  • 下载量: 2,134  浏览量: 10,535   国家自然科学基金支持

作者:  

李 星,庞明军:宁夏大学数学计算机学院,银川

关键词:
奇异积分方程热接触问题功能梯度材料裂纹 Singular Integral Equation; Thermal Contact Problem; Functionally Graded Material; Crack

摘要:

接触问题是我们生产、生活和实际工程中常见的物理现象,由于在接触过程中接触区内不可避免会产生应力集中现象,从而大大降低了机械结构部件的使用寿命。近些年来功能梯度材料的出现大大改善了这种缺陷,所以研究功能梯度材料的接触问题对于提高生产效率,增加经济效益和工程安全有着重要意义。本文讨论了带裂纹的半无限大功能梯度材料的热接触问题。利用叠加原理将所研究的问题转化为第一类带Cauchy核的奇异积分方程,并利用数值求积方法求解了奇异积分方程,得到了裂纹尖端的应力强度因子。通过程序画图分析了材料参数,摩擦系数及裂纹尺寸对裂纹尖端应力强度因子的影响

 Contact problems are common physical phenomena in the real life and engineering practices due to the inevitability of contact. At the end of the contact area, the phenomenon of stress concentration may happen, which can significantly reduce the service life of mechanical structural components. In recent years, functionally graded materials (FGMs) have been used in many important engineering practices to relieve stress concentration. The study of the contact problem of functionally graded materials can provide instruction to improve production efficiency and increase economic benefits with a great deal. The present paper discusses the thermal contact problem of a half-plane functionally graded material with a crack. By using the superposition principle, the stated problem is reduced to the Cauchy type singular integral equations of the first kind, which are solved via numerical quadrature method. Then, figures are plotted to reveal the influences of the parameters of the non-homogeneity, the friction coefficient, and the dimension of crack on the stress intensity factor.

 

文章引用:
李星, 庞明军. 含裂纹功能梯度材料热接触的奇异积分方程方法[J]. 应用数学进展, 2012, 1(2): 49-58. http://dx.doi.org/10.12677/aam.2012.12007

参考文献

[1] S. Suresh, A. E. Giannakoppoulos and J. Alcal´a. Spherical indentation of compositionally graded materials: Theory and experiments. Acta Materialia, 1997, 45(4): 1307-1321.
[2] A. E. Giannakopoulos, S. Suresh. Indentation of solids with gradients in elastic properties: Part I. Point force solution. International Journal of Solids and Structures, 1997, 34(19): 2357-2392.
[3] A. E. Giannakopoulos, S. Suresh. Indentation of solids with gradients in elastic properties: Part II. Axisymmetric indentors. International Journal of Solids and Structures, 1997, 34(19): 2392-2428.
[4] M. A. Guler, F. Erdogan. Contact mechanics of two deformable elastic solids with graded coatings. Mechanics of Materials, 2006, 38: 633-647.
[5] V. S. Tonoyan, S. A. Melkumian. On symmetric indentation of two rigid similar punches into an elastic half-plane with a vertical semi-infinite cut. Doklady Akademii Nauk Annianskoy, 1973, SSR57: 282-288.
[6] V. S. Sarkisian, E. K. Hrihorian and S. S. Shaginian. On two boundary value problems in elasticity theory for a half-plane weakened by an internal rectilinear cut. Uchenyie Zapiski Yerevanskogo Universiteta, Yestestvenyie Nauki, 1980, 2: 49-58.
[7] A. F. Minasian, V. S. Tonoyan. Contact problem of a half-plane with a vertical cut in stick: Mechanics of deformable bodies and structures. Yerevan: Akademiya Nauk Armianskoy, 1985: 286-297.
[8] J. Qian, N. Hasebe. Circular rigid punch on a semi-infinite plane with an oblique edge crack subjected to concentrated forces or point dislocations. Proceedings of Japan Civil Engineers, 1997, 570: 149-159.
[9] A. H. Boyadzhi, M. L. Buryshkin and M. V. Radiollo. On action of a rigid punch on a half-plane weakened by a regular set of cracks. Prikladnaya Matematika i Mekhanika 1988, 5: 856-860.
[10] I. I. Kudish. Contact Problem in elasticity theory of bodies with cracks. Prikladnaya Matematika I Mekhanika, 1986, 5: 1020-1033.
[11] 李星. 积分方程[M]. 北京: 科学出版社, 2008.
[12] N. Hasebe, Qian J. Circular rigid punch with one smooth and another sharp ends on a half-plane with edge crack. Journal of Applied Mechanics, 1997, 64: 73-79.
[13] Y. P. Avetisian, O. K. Khachatrian and S. S. Shaginian. On a mixed boundary value problem in elasticity theory for a half-plane weakened by an internal rectilinear cut. Uchenyie Zapiski Yerevanskogo Universiteta, Yestestvenyie Nauki, 1983, 1: 28-33.
[14] V. V. Panasyuk, O. P. Datsyshyn and H. P. Marchenko, Stress state of a hail-plane with cracks under rigid punch action. International Journal of Fracture, 2000, 101: 347-363.
[15] M. P. Savruk. Two-dimensional problems of elasticity for bodies with cracks. Kyiv: Naukova Dumka, 1981.
[16] Li Xing. Effect of periodic gasket on periodic contact problem. In: H. Begehr, et al., Eds., Partial differential and integral equations, Dordrecht, Boston, London: Kluwer Academic Publishers, 1999: 249-254.
[17] 周跃亭, 李星. 具周期裂纹的半平面周期接触问题的奇异积分方程数值解法[J]. 固体力学学报, 2005, 26(2): 167-174.
[18] 刘铁军, 汪越胜. 功能梯度材料涂层半空间的轴对称光滑接触问题[J]. 固体力学学报, 2007, 28(1): 49-54.
[19] H. J. Choi. Thermoelastic problem of steady-state heat flow disturbed by a crack perpendicular to the graded interfacial zone in bonded materials. International Journal of Solids and Structures, 2003, 48(6): 893-909.
[20] H. J. Choi. On the plane contact problem of a functionally graded elastic layer loaded by a frictional sliding flat punch. Journal of Mechanical Science and Technology, 2009, 23(10): 2703-2713.
[21] N. I. Muskhelishivili. Singular integral equations. Groningen: Noordhoff, 1953.