AAM  >> Vol. 1 No. 1 (August 2012)

    一类特殊结构对称矩阵三元组(M、C、K)的逆二次特征问题
    On the Quadratic Inverse Eigen-Problem for the Special Triple (M, C, K) of Symmetric Matrix

  • 全文下载: PDF(213KB) HTML    PP.18-27   DOI: 10.12677/AAM.2012.11003  
  • 下载量: 1,824  浏览量: 7,838   科研立项经费支持

作者:  

黄贤通,严深海:赣南师范学院数学与计算机科学学院,赣州

关键词:
二次特征问题逆二次特征问题逆二次特征对问题Quadratic Eigenvalue Problem; Quadratic Inverse Eigen-Problem;Quadratic Inverse Eigenpairs Problem

摘要:
应用广义逆矩阵理论和线性代数基本理论研究了一类特殊结构对称矩阵三元组(MCK)的逆二次特征值问题和逆二次特征对问题,给出了解的存在性和解的表达式,数值算例说明了算法的有效性

The quadratic inverse eigen-problem was studied for the special triple (M, C, K) of symmetric matrix. The existence and expression of the solution was given by the generation inverse matrix and linear algebra theorem. The numerical experiment shows that the algorithm is effective.

文章引用:
黄贤通, 严深海. 一类特殊结构对称矩阵三元组(M、C、K)的逆二次特征问题[J]. 应用数学进展, 2012, 1(1): 18-27. http://dx.doi.org/10.12677/AAM.2012.11003

参考文献

[1] P. Lancaster, U. Prells. Inverse problems for damped vibrating systems. Journal of Sound and Vibration, 2005, 283(3-5): 891-914.
[2] B. Dong, M. M. Lin and M. T. Chu. Parameter reconstruction of vibration systems from partial eigen information. Journal of Sound and Vibra- tion, 2009, 327(3-5): 391-401.
[3] F. Tisseur. Backward error and condition of polynomial eigenvalue problems. Linear Algebra and Its Applications, 2000, 309(1-3): 339-361.
[4] L. Starek. A symmetric inverse vibration problem with overdamped modes. Journal of Sound and Vibration, 1995, 5(181): 893-903.
[5] B. N. Datta, S. Elhay, Y. M. Ram and D. R. Sarlissian. Partial eigen structure assignment for the quadratic pencil. Journal of Sound and Vibration, 2000, 230(1): 101-110.
[6] P. Nylen. Inverse eigenvalue problem: Existence of special mass-damper-spring systems. Linear Algebra and Its Applications, 1999, 297(1-3): 107-132.
[7] L. Starek, D. J. Inman. Symmetric inverse eigenvalue vibration problem and its application. Mechanical Systems and Signal Processing, 2001, 15(1): 11-29.
[8] B. N. Datta, S. Deng, V. O. Sokolov and D. R. Sarkissian. An optimization technique for damped model updating with measured data satisfy- ing quadratic orthogonality constraint. Mechanical Systems and Signal Processing, 2009, 23(6): 1759-1772.
[9] 王正盛. 阻尼弹簧一质点系统中的逆二次特征值问题[J]. 高等学校计算数学学报, 2005, 3(27): 217-224.
[10] Y.-F. Cai , Y.-C. Kuo, W.-W. Lin and S.-F. Xu. Solutions to a quadratic inverse eigenvalue problem. Linear Algebra and its Applications, 2009, 430(5-6): 1590-1606.
[11] P. Lancaster, F. Tisseur. Hermitian quadratic matrix polynomials: Solvents and inverse problems. Linear Algebra and Its Applications, 2012, 436(10): 4017-4026.
[12] B. N. Datta, V. Sokolov. A solution of the affine quadratic inverse eigenvalue problem. Linear Algebra and Its Applications, 2011, 434(7): 1745-1760.
[13] Y.-C. Kuoa, B. N. Datta. Quadratic model updating with no spill-over and incomplete measured data: Existence and computation of solution. Linear Algebra and Its Applications, 2012, 436(7): 2480-2493.
[14] 王顺绪, 戴华. 二次特征值问题的并行Jacobi-Davidson方法及其应用[J]. 数值计算与计算机应用, 2008, 4(29): 313-320.
[15] 谢冬秀, 雷纪刚, 陈桂芝编著. 矩阵理论及方法[M]. 北京: 科学出版社, 2012: 260-267.