[1]
|
The correlation between the covalent bonds and magnetocaloric properties of the Mn2−xFexPyGe1−yMz compounds
Journal of Applied Physics,
2021
DOI:10.1063/5.0056190
|
|
|
[2]
|
Machine learning assisted development of Fe2P-type magnetocaloric compounds for cryogenic applications
Acta Materialia,
2022
DOI:10.1016/j.actamat.2022.117942
|
|
|
[3]
|
Impact of F and S doping on (Mn,Fe)2(P,Si) giant magnetocaloric materials
Acta Materialia,
2022
DOI:10.1016/j.actamat.2022.118057
|
|
|
[4]
|
Impact of W doping on Fe-rich (Mn,Fe)2(P,Si) based giant magnetocaloric materials
Journal of Alloys and Compounds,
2023
DOI:10.1016/j.jallcom.2022.167802
|
|
|
[5]
|
The correlation between the covalent bonds and magnetocaloric properties of the Mn2−xFexPyGe1−yMz compounds
Journal of Applied Physics,
2021
DOI:10.1063/5.0056190
|
|
|
[6]
|
Machine learning assisted development of Fe2P-type magnetocaloric compounds for cryogenic applications
Acta Materialia,
2022
DOI:10.1016/j.actamat.2022.117942
|
|
|
[7]
|
Effect of off-stoichiometry and Ta doping on Fe-rich (Mn,Fe)2(P,Si) based giant magnetocaloric materials
Scripta Materialia,
2023
DOI:10.1016/j.scriptamat.2022.115253
|
|
|
[8]
|
Machine learning assisted development of Fe2P-type magnetocaloric compounds for cryogenic applications
Acta Materialia,
2022
DOI:10.1016/j.actamat.2022.117942
|
|
|
[9]
|
The correlation between the covalent bonds and magnetocaloric properties of the Mn2−xFexPyGe1−yMz compounds
Journal of Applied Physics,
2021
DOI:10.1063/5.0056190
|
|
|
[10]
|
Effect of off-stoichiometry and Ta doping on Fe-rich (Mn,Fe)2(P,Si) based giant magnetocaloric materials
Scripta Materialia,
2023
DOI:10.1016/j.scriptamat.2022.115253
|
|
|
[11]
|
Advanced Magnetocaloric Materials for Energy Conversion: Recent Progress, Opportunities, and Perspective
Advanced Energy Materials,
2024
DOI:10.1002/aenm.202400369
|
|
|