西辽河流域黄土研究进展与展望
Progress and Prospects of Loess Research in West Liaohe River Basin
DOI: 10.12677/ccrl.2025.141002, PDF, HTML, XML,   
作者: 姚振远:浙江师范大学地理与环境科学学院,浙江 金华
关键词: 黄土西辽河流域年代地层学气候变化物质来源Loess West Liaohe River Basin Chronostratigraphy Climate Change Material Sources
摘要: 西辽河流域是东北黄土的分布亚区之一,流域内广泛分布着风成黄土沉积物,是研究区域环境变化的理想材料。本文从该区黄土沉积物的沉积与分布特征、形成年代、可能的物质来源、黄土沉积反映的不同时间尺度的气候变化特征及驱动机制等方面综述了近年来该区黄土研究的主要进展。结果表明:(1) 该区绝大多数黄土沉积物为原生黄土,沉积速率相对较高的黄土剖面通常沿浑善达克沙地和科尔沁沙地边缘零星分布,多形成于末次冰期以来。更老的黄土剖面位于流域南部,目前已知的最老的黄土沉积物的底界年龄为~1.22 Ma。(2) 该区的黄土沉积物记录了亚洲内陆干旱化与东部沙地的扩张历史,主要与中更新世气候转型(MPT)以来全球冰量的逐渐增长有关。(3) 黄土记录还反映了不同时间尺度的东亚夏季风(EASM)变化特征及其驱动机制。全新世期间,区域夏季风降水呈现出“低–高–低”的模式,主要受控于全球冰量和海平面的变化,其次由太阳辐射驱动。晚第四纪以来,黄土记录了多次气候干湿波动。多指标的分析结果表明,该区的EASM自早/中更新世以来持续减弱,特别是在中布容事件(MBE)后的间冰期,为EASM对MBE的区域差异响应提供了证据。未来应加强研究区黄土沉积物的底界年龄、古气候定量重建以及黄土粉尘物质来源等方面的系统研究。
Abstract: The West Liaohe River Basin is one of the distribution subregions of loess in Northeast China, and wind-formed loess sediments are widely distributed in the basin, which is an ideal material for the study of regional environmental changes. This article summarizes the main progress in loess research in this area in recent years, including sedimentation and distribution characteristics, formation age, possible material sources, climate change characteristics and driving mechanisms reflected by loess sedimentation at different time scales. The results show that: (1) the majority of loess sediments in the region are primary loess, and loess profiles with relatively high sedimentation rates are usually sporadically distributed along the edges of the Otindag and Horqin sandy lands, and most of them have been formed since the last glacial period. Older loess profiles are located in the southern part of the basin, with the oldest known loess deposits having a base age of ~1.22 Ma. (2) Loess deposits in the region record the history of aridification of the Asian interior and expansion of the eastern sands, mainly related to the gradual increase in global ice volume since the Mid Pleistocene Climate Transition (MPT). (3) The eolian record also reflects the characteristics of East Asian Summer Monsoon (EASM) variability and its driving mechanisms at different time scales. During the Holocene, the regional EASM precipitation showed a “low-high-low” pattern, which was mainly controlled by global ice volume and sea level changes, and secondly driven by solar radiation. Since the Late Quaternary, the Loess has recorded several climatic wet and dry fluctuations. The results of the multi-indicator analyses indicate that the EASM in the region has continued to weaken since the Early/Middle Pleistocene, especially during the interglacial period following the Mid Brunhes Event (MBE), which provides evidence for regional differences in the response of the EASM to the MBE. In the future, systematic studies on the age of the bottom boundary of loess sediments, quantitative paleoclimate reconstruction, and the source of loess dust material in the study area should be strengthened.
文章引用:姚振远. 西辽河流域黄土研究进展与展望[J]. 气候变化研究快报, 2025, 14(1): 8-20. https://doi.org/10.12677/ccrl.2025.141002

1. 引言

风成黄土在世界各大洲广泛分布,覆盖了地球陆地表面约10%的面积[1]。中国黄土具有分布面积广、厚度大和沉积连续等特点,是研究环境变化的理想材料[2]-[4]。作为独一无二的陆相沉积档案,黄土沉积物保存着古气候变迁、物质来源以及粉尘通量的宝贵信息[5]-[7]。此外,这些粉尘物质还会被冬季风和高空西风搬运传输至北太平洋甚至格陵兰地区;并通过“阳伞效应”、“冰核效应”、“铁肥料效应”参与全球生物地球化学循环,对区域乃至全球气候产生巨大影响。

我国东北地区是除了黄土高原和新疆以外,黄土分布面积最广的地区,该区的黄土又可分为松辽平原东部、西辽河流域南部丘陵和辽东半岛三个亚区[8] [9]。其中,西辽河流域是东北黄土的典型分布地区,由于具备沙源、风动力和堆积场所等条件,在低缓丘陵、山坡和河流阶地之上广泛发育了厚度不等的黄土沉积物。上世纪九十年代以来,该区的黄土研究取得了一系列成果,相关研究主要围绕流域内黄土堆积的沉积与分布特征[8]-[11]、年代地层学[12]-[17]、物质来源[10] [18]-[24]、气候环境响应[11] [12] [23] [25]-[34]等方面开展,为认识该区域黄土沉积及其形成演化过程提供了科学依据。鉴于此,本文总结了近年来西辽河流域黄土沉积的研究进展,阐述了黄土沉积的分布特征、形成年代、可能的物质来源以及黄土反映的不同时间尺度的气候变化特征及驱动机制。在此基础上,本文还对未来的研究提出展望,以期更好地认识西辽河流域的黄土沉积及其形成发育过程,进一步理解其蕴含的气候与环境变化的重要信息。

2. 研究区概况

西辽河流域位于我国东北地区,北临我国东部的三大沙地和大兴安岭南部余脉,南靠燕山山脉,接近东亚夏季风北部边缘(图1(a))。从所受大气环流系统来看,东亚季风和西风急流都对该区有深刻影响。冬季,受蒙古–西伯利亚高压影响,盛行偏西和偏北风;夏季,整体以偏南风和西南风为主(图1(b)~(c))。气象观测数据显示,其年均温为~7.8℃,年降水量为~390 mm,其中6~8月份的降水量能占到全年降水量的65%以上,属于典型的温带季风性气候。该区植被低矮稀疏,以本氏针茅(Stipa capillata Linn.)、克氏针茅(Stipa krylovii Roshev)、短花针茅(Stipa breviflora Griseb.)为代表[35],较低的植被覆盖率使得地表物质极易被吹蚀。

Figure 1. (a) The geographical location the Xiliao River Basin; (b)~(c) Atmospheric circulation models for summer (JJA) and winter (DJF) at 925 hPa, based on reanalysis data from NCEP/NCAR from 1980 to 2020

1. (a) 西辽河流域地理位置;(b)~(c) 夏季(JJA)和冬季(DJF) 925 hPa的大气环流模式,基于NCEP/NCAR的1980~2020年的再分析数据

3. 黄土沉积及其形成年代

3.1. 黄土沉积与分布特征

西辽河流域地区的黄土分布北界大致起于巴林左旗和土城子以北的大坝岭,由之向东向南延续,分布于热河山地及西辽河平原西侧的翁牛特旗、赤峰、建平、边墙、朝阳、凌源、平泉、承德和隆化等地[8]。该区沉积速率相对较高的黄土剖面(主要是末次冰期以来的黄土沉积)通常沿浑善达克沙地和科尔沁沙地边缘零星分布,其厚度一般不超过十米[10] (图2(a)~(d))。黄土沉积物一般呈黄褐色,多为砂质黄土,较为松散,垂直节理发育,无层理,部分发育有古土壤和钙质结核,古土壤呈棕色。相比之下,较厚和年代久远的黄土沉积物主要分布于该区的南部,其厚度一般在数十米不等[11] (图2(e)~(h)),且黄土–古土壤韵律较为清晰,这些黄土沉积物披覆于低缓丘陵、山坡与河流的高阶地上。通常在剖面下部颜色加深,多呈红棕色,多发育有钙质结核或钙淀积层。

Figure 2. Field photos of a typical loess profiles in the West Liaohe River Basin (including Ping’an cun, Kulungou, and Anjiawopu profiles according to literature [36]; Tabanhuru profile according to literature [30]; Damaliantu profile according to literature [37]; Niuyangzigou, Sanbahuo and Toudaojingzi profiles according to literature [38])

2. 西辽河流域典型黄土剖面的野外照片(其中平安村、库伦沟、安家窝铺剖面据文献[36];塔班呼如剖面据文献[30];大马连图剖面据文献[37];牛样子沟、三把伙和头道井子剖面据文献[38])

3.2. 黄土沉积的形成年代

Table 1. Basic information of main loess profiles in the West Liaohe River Basin

1. 西辽河流域主要黄土剖面基本信息

站点名称

经度

纬度

年龄跨度

测年方法

参考文献

库伦沟(KLG)

121˚15′E

42˚37′N

63.96~333.52 ka

OSL

弋双文等,2006;Yi et al., 2012

平安村(PA)

121˚41′E

42˚43′N

15.79~297.72 ka

OSL

Yi et al., 2012

翁牛特(WNT)

109˚32′E

34˚34′N

1.06~10.15 ka

AMS14C

Mu et al., 2016

塔班呼如(TB)

116˚46′34.7″E

43˚27′36.42″N

1.1~25.6 ka

OSL

Zhou et al., 2018

四方山(SFS)

116˚27′8.0″E

43˚27′8.2″N

3.2~18.3 ka

OSL

Zhou et al., 2018

格类河(GLH)

117.42˚E

43.25˚N

0~12 ka

OSL

Zeng et al., 2024

北沟(BG)

115.71˚E

42.40˚N

0~130 ka

OSL

蒋凯等,2019

安家窝铺(AJWP)

119˚15.20′E

41˚41.05′N

12.1~70 ka

OSL

弋双文,2017

牛样子沟(NYZG)

118˚43′E

41˚55′N

~0~1 Ma

OSL、古地磁

曾琳等,2011; Yi et al., 2016

三把伙(SBH)

118˚41.17′E

42˚18.27′N

~0~1 Ma

OSL、古地磁

Yi et al., 2015; Zeng et al., 2016

头道井子(TDJZ)

119˚0.22′E

42˚6.88′N

~0.65~1.22 Ma

古地磁

Zeng et al., 2016

四十家子(SSJZ)

118.66˚E

41.87˚N

~0~1 Ma

OSL、古地磁

Sun et al., 2018

在风成黄土的年代学研究中,主要涉及光释光(OSL)测年、加速器14C (AMS14C)测年、古地磁测年等方法。该区目前已报道的主要黄土剖面的基本信息列于表1。Mu et al. (2016) [27]利用AMS14C方法对翁牛特(WNT)剖面进行了年代学分析,获得了该剖面全新世以来的年龄序列。弋双文(2017) [36]先后对本区末次冰期以来的数个黄土剖面进行了系统的光释光测年研究。Yi et al. (2015) [14]利用石英SAR和钾长石pIRIR290两种测年方法对三把伙(SBH)剖面进行了较高分辨的测年研究,结果表明石英和长石的年龄在44~15 ka较一致,但当样品老于44 ka时,石英SAR测年结果有明显低估。随后,Yi et al. (2016) [13]对牛样子沟(NYZG)剖面开展了高分辨率的测年研究,对比了长石和石英在该地区的测年结果,认为石英OSL与钾长石pIRIR290的测年结果在末次冰期内较为一致,但当石英年龄超过7万年时会存在低估,该研究将东北地区的光释光测年结果拓展至末次间冰期。值得注意的是,库伦沟(KLG)、NYZG、SBH剖面都缺少全新世的年代结果,这可能是本区受强烈的人类活动干扰或者潜在的风力/流水侵蚀作用所导致的。

对于长尺度的黄土沉积物年代测定,古地磁是最常见和有效的方法。早期的磁性地层学研究[39]通常没有使用逐步退磁技术,磁屏蔽的效果也较差,因而其结果有待进一步检验。曾琳等(2011) [17]最早对NYZG剖面进行了高精度的系统逐步热退磁工作,表明该区的黄土沉积物沉积始于早更新世~1 Ma,随后的工作将黄土沉积的底界年龄推进至~1.22 Ma [16]。该剖面位于赤峰南部地区的一条冲沟内且其露头部分仍未见底。因此,未来的研究需要寻找年代更为久远的黄土剖面进行年代学研究,以厘清该区黄土沉积的起始年龄。

4. 可能的物质来源

深入理解风成沉积物的物质来源是研究风成记录的关键环节,对揭示风尘物质的产生与搬运机制、解读风成沉积的古环境记录以及预测风尘的环境效应等方面具有重要意义[6]。迄今为止,对该区黄土的物源研究相对薄弱,涉及的物源示踪方法主要有Nd-Sr同位素、碎屑锆石U-Pb年龄谱、铀(U)和铪(Hf)放射性同位素等方法。早期基于Nd-Sr同位素的研究[10] [18] [20]仅对MIS4以来零星的样品的Nd-Sr同位素组成进行了测定,结果表明赤峰黄土整体具有高ɛNd和低87Sr/86Sr的特征,初步指示其来源于附近的浑善达克沙地和科尔沁沙地。最近,Zeng et al. (2020) [23]对区域内3个黄土剖面(SBH、NYZG、TDJZ)各个层位的28~45 μm硅酸盐组分的Nd-Sr同位素进行了测定,推测其物质来源于浑善达克沙地,且过去1.2 Ma一直保持不变。

Xie et al. (2012) [21]将碎屑锆石U-Pb年龄谱的方法首次应用于科尔沁沙地南缘的两个末次冰期以来沉积的黄土剖面,结果表明其锆石年龄组与科尔沁沙地相同。结合锆石的铪同位素(ɛHf (t)),该研究认为2600~2300,2100~1600,600~100 Ma三组年龄且ɛHf (t)为负值的锆石可能来源于华北克拉通东北部,600~100 Ma且ɛHf (t)为正值的锆石可能来源于中亚造山带东部,定量估计两大构造带对黄土物质的贡献各占一半。基于黄土粘粒Nd和Hf同位素的研究表明,赤峰黄土的粘粒可能混合了亚洲冬季风搬运的南部蒙古戈壁(SMG)矿物尘和西风搬运的塔里木–中朝克拉通(SKTC)西北部的沙漠矿物尘[24]。最近,Yin et al. (2024) [22]对沙地作为该区黄土的主要物源区的观点提出了质疑,他们认为苏尼特风蚀盆地而不是沙地是其下风向黄土沉积物的主要物质来源。目前的研究鲜有对该区黄土粉尘的物质来源及其在空间上的均一性、冰期–间冰期时间尺度物源是否变化等问题的探讨,选择合适的物源示踪手段进行综合判别可能是回答上述问题的关键。

5. 黄土沉积反映的不同时间尺度的气候变化特征及驱动机制

5.1. 亚洲内陆干旱化与区域沙地扩张历史

黄土是干冷气候下的产物,粉尘的产生、传输和沉积过程与源区(主要是内陆地区干旱的沙漠、沙地和戈壁)的变化密切相关,因此可以通过其揭示沙地扩张或亚洲内陆干旱化过程。目前该区长尺度黄土大多沉积自早/中更新世以来,由此反映的气候干冷化趋势与中更新世气候转型(MPT)期间全球温度、冰量、海平面的变化趋势一致(图3(b)~(d))。

Figure 3. Comparison of grain size >63 μm of the SBH, TDJZ, NYZG and SSJZ sections with other records (a) Grain size of SBH, TDJZ, NYZG, and SSJZ profiles [12] [23]; (b) Global average temperature [40]; (c) Global sea level [41]; (d) Record of benthic δ18O [42]

3. SBH、TDJZ、NYZG和SSJZ剖面 > 63 μm粒度记录与其他记录的比较(a) SBH、TDJZ、NYZG、SSJZ剖面的粒度[12] [23];(b) 全球平均温度[40];(c) 全球海平面[41];(d) 底栖δ18O [42]

此外,一些学者[11] [12] [23] [23]还探讨了粒度指标在本区黄土中的古气候意义,大多参照了以往黄土高原地区的意义解释[3],例如>63 μm的含量被用于指示沙地的扩张过程。四个黄土剖面(SBH、TDJZ、NYZG、SSJZ)的>63 μm含量显示出较为一致的逐渐增大的长期趋势(图3(a)),表明我国东部沙地自中更新世以来逐步扩张的过程,Zeng et al. (2020) [23]认为这种趋势与中更新世以来全球冰量的逐渐增长有关。由于SBH剖面的位置靠近沙地,因而对沙地的扩张过程更为敏感,在深海氧同位素(Marine Isotope Stage, MIS) 2、4、6、8、10、12和16阶段,出现明显的粒度粗化,这可能与MPT后冰期全球冰量的明显增长有关。

5.2. 不同尺度的东亚夏季风演化特征及其驱动机制

5.2.1. 全新世期间的东亚夏季风演化特征及其驱动机制

WNT剖面的重建结果显示在全新世期间,1.16~0.8 ka期间气候整体较为干旱,随后夏季风开始增强并在~6 ka到达峰值,晚全新世夏季风又减弱并伴随数次五百年尺度的气候波动[27] (图4(a)~(b))。对浑善达克沙地附近的高分辨率砂黄土TB剖面的重建也表明,该区全新世季风降水呈现出“低–高–低”模式,即降水的最大值出现在全新世中期[30];该模式与公海基于孢粉重建的降水记录[43]、达里湖的树木花粉[44]、岱海的树木花粉[45] (图4(e)~(g))一致。太阳辐射在早全新世达到峰值随后逐渐减小(图4(i)),这与该地区季风降水峰值出现在全新世中期不一致,说明太阳辐射不是驱动季风迁移的直接因素。大约在6 ka时,最小冰量和最高海平面对应于季风的最北端迁移,这意味着季风迁移是由海平面和冰量的变化直接驱动的。此后的海平面和冰量几乎没有变化,晚全新世夏季风减弱可能是由太阳辐射驱动的[30]

Figure 4. Comparison of EASM variation characteristics since the Last Glacial Maximum (LGM) in loess records of the West Liaohe River Basin with other records, (a)~(b) χ and TOC of WNT profile [27]; (c)~(d) χ and carbonate of TB profiles [30]; (e) Precipitation records reconstructed based on pollen in the Gonghai Lake [43]; (f) Tree pollen in Dali Lake [44]; (g) Tree pollen in Daihai Lake [45]; (h) CO2 records [46]; (i) Record of benthic δ18O [42]; (j) Global Sea level [41]; (k) Insolation in July at 65˚N [47]

4. 西辽河流域黄土记录的末次盛冰期(LGM)以来的东亚夏季风变化特征与其他记录的对比,(a)~(b) WNT剖面的χ和TOC [27];(c)~(d) TB剖面的χ和碳酸盐[30];(e) 公海基于孢粉重建的降水记录[43];(f) 达里湖树木花粉[44];(g) 岱海树木花粉[45];(h) CO2记录[46];(i) 底栖δ18O记录[42];(j) 全球海平面[41];(k) 65˚N七月太阳辐射[47]

5.2.2. 晚第四纪以来的东亚夏季风演化特征及其驱动机制

季风边缘区的降水主要由夏季风的迁移决定,在末次间冰期东亚夏季风可以延伸到内蒙古中东部,北沟(BG)剖面记录了浑善达克沙地南缘末次间冰期以来区域古季风的演化历史[28] [31]。晚第四纪以来,该区的黄土记录了东亚夏季风的多次明显的干湿变化,在108~144、233 ± 21和86 ± 7 ka前后,气候较为暖湿;在261 ± 32 ka前后气候极为干冷,甚至出现沙漠化过程[34]

5.2.3. 早/中更新世以来的东亚夏季风演化特征及其驱动机制

西辽河流域南部地区的黄土–古土壤序列是东北地区目前已知的年代最为久远的宝贵气候档案,具有重建区域古气候和古环境的巨大潜力。从环境代用指标来看,磁化率(χ)、砂含量(>63 μm含量)、总有机碳(TOC)、有机碳同位素(δ13Corg)、硼同位素(δ11Bpr)等指标被用于更新世期间的EASM重建。选取三条代表性记录(NYZG、SBH、TDJZ)用于反演区域古季风演化过程。由于成土过程中会生成大量的亚铁磁性矿物,可以使得土壤的磁化率(χ)明显增强,即磁化率增强的“成壤模式”。因而在黄土高原地区,磁化率被广泛作为EASM强度的可靠替代指标。总体来说,磁化率记录的变化趋势大致一致,即自早/中更新世以来逐渐减小(图5(a)),暗示该地区的夏季风自早/中更新世持续减弱。然而,东北地区黄土的磁化率变化机制可能较为复杂,例如,宁城大马连图剖面的磁化率变化与黄土/古土壤韵律的变化之间的对比性不强[37],推测可能是因为土壤潜育化作用造成的强磁性矿物溶解。这种现象在现代气候更为湿润的松原、哈尔滨等地的黄土剖面中更加明显[48] [49]。此外,Zeng et al. (2017) [11]认为NYZG剖面的磁化率变化特征在~0.6 Ma以来与黄土高原的典型黄土序列明显不同是由磁化率的气候敏感性差异(抗磁性矿物如石英的输入增加)而不是季风强度的区域差异导致的。综上,该区黄土的磁性变化机制有待进一步厘清。

Figure 5. Comparison of East Asian summer monsoon variation characteristics of Pleistocene loess records in the Xiliao River Basin with other records, (a) χ records [11] [16]; (b) sand content records [23]; (c) δ13Corg records [26] [32]; (d) TOC records [32]; (e) δ11Bpr records [25]; (f) CO2 records [50]-[54]; (g) global sea level records [41]; (h) benthic δ18O records [42]

5. 西辽河流域更新世黄土记录的东亚夏季风变化特征与其他记录的对比,(a) χ记录[11] [16];(b) 砂含量记录[23];(c) δ13Corg记录[26] [32];(d) TOC记录[32];(e) δ11Bpr记录[25];(f) CO2记录[50]-[54];(g) 全球海平面[41];(h) 底栖δ18O记录[42]

一些研究者[3] [55]认为,黄土中的砂含量可以指示沙地的扩张过程,进而能够间接指示EASM的进退。按照这一推论,该地区的EASM自早/中更新世以来逐渐减弱,特别是在中布容事件(MBE)之后(图5(b))。事实上,沙漠的扩张主要受控于沉积物的可用性、西伯利亚高压驱动的冬季干旱和风力增强等因素而非夏季风驱动的水分的有效性[56]。为了更好地探讨该地区中更新世以来夏季风的演变过程,Lei et al. (2021) [25]报道了NYZG剖面~800 ka以来的硼同位素(δ11Bpr),并基于该指标反演了夏季风降水,发现EASM在MBE后突然减弱,为EASM对MBE的区域差异响应提供了证据。与MBE前的间冰期相比,MBE后的间冰期的全球冰量更小、海平面高度和二氧化碳浓度更高(图5(f)~(h)),理论上会使得EASM增强,这说明其他过程可能主导了该地区的夏季风强度,值得进一步研究。

有机质含量(TOC)和有机碳同位素(δ13Corg)可以揭示植物生物量和植被组成的变化。NYZG剖面的TOC通常在间冰期呈现高值,而在冰期呈现低值(图5(d)),这与间冰期地表生物量增多,冰期生物量减少的规律一致。值得注意的是,NYZG剖面S7以下的古土壤层的TOC很低,这可能与有机质的保存有关。鹿化煜等(2015) [32]发现NYZG剖面的δ13Corg在间冰期偏正,而在冰期偏负(图5(c)),并认为温度是决定东北地区植被碳同位素组成变化的主要因素。SBH剖面的δ13Corg表现出类似的特征[26]

5.3. 古气候定量重建

古气候定量重建工作是近年来黄土古气候研究的热点和难点,许多学者试图通过表土的现代过程研究揭示气候代用指标与现代气候因子之间的关系,从而构建转换方程以定量重建古气候过程。本区的表土现代过程研究仍处于起步阶段,Zhou et al. (2018) [30]依据现代降水梯度初步探索了本区表土磁化率与年平均降水量(MAP)之间的关系,结果表明对于季风区(MAP > 450 mm),表土磁化率一般在90~120 (SI);对于季风边缘区(300 < MAP < 450 mm),表土磁化率一般在60~80 (SI);对于大陆性气候区(MAP < 300 mm),表土磁化率一般在40~50 (SI)。根据这一关系,初步估计浑善达克沙地南缘在~10.5~26 ka期间的MAP < 300 mm;在~7~10.5 ka期间和~0.5 ka以来的300 < MAP < 450 mm;在~0.5~7 ka期间的MAP > 450 mm (图6(a))。事实上,表土磁化率(χ)与MAP之间并非简单的线性关系,频率磁化率(χfd)与降水的相关性更强。在未来的研究中,可以在更大范围内进行表土–现代气候因子的调查,选择更为适合的参数来建立定量转换方程,以重建区域古降水变化。

Figure 6. Quantitative reconstruction of paleoclimate based on the loess of West Liaohe River, (a) Reconstruction of paleoprecipitation in TB profile [30]; (b)~(f) Reconstruction of paleotemperature in GLH profile [29]

6. 基于西辽河黄土的古气候定量重建,(a) TB剖面的古降水重建[30];(b)~(f) GLH剖面的古温度重建[29]

在古温度重建方面,越来越多的研究表明有机碳同位素(δ13Corg)与间冰期温度而不是降水相关[29] [57]。Zeng et al. (2024) [29]根据空间表土现代过程和剖面指标变化特征的综合证据,证实了暖季温度是驱动GLH剖面中δ13Corg值变化的主控因素,通过δ13Corg-温度转换方程定量重建了该区全新世期间的温度变化。重建的温度参数(夏季温度、生长季节温度、0/10℃以上的积温和温度 ≥ 10℃的天数)均在早全新世约9.3 ka达到峰值,随后在中、晚全新世呈波动下降趋势(图6(b)~(f)),与夏季太阳辐射的变化一致,表明季风边缘区夏季/生长季温度变化主要响应于轨道强迫。除了δ13Corg以外,成壤赤铁矿[58]和甘油二烷基甘油四醚(brGDGTs) [59]在古温度重建方面也表现出巨大的潜力,未来的研究可以考虑通过其进行古温度重建。

6. 结论与展望

西辽河流域作为东北黄土的分布亚区之一,广泛分布着风成黄土沉积物,是研究区域环境变化的理想材料。本文梳理了近年来西辽河流域黄土沉积的主要研究进展,获得以下主要认识:(1) 该区绝大多数黄土沉积物为原生黄土,沉积速率相对较高的黄土剖面通常沿浑善达克沙地和科尔沁沙地边缘零星分布,多形成于末次冰期以来。更老的黄土剖面位于流域南部,目前已知的最老的黄土沉积物的底界年龄为~1.22 Ma。(2) 该区的黄土沉积物记录了亚洲内陆干旱化与东部沙地的扩张历史,主要与MPT以来全球冰量的逐渐增长有关。(3) 此外,黄土记录还反映了不同时间尺度的EASM变化特征及其驱动机制。全新世期间,区域夏季风降水呈现出“低–高–低”的模式,主要受控于全球冰量和海平面的变化,其次由太阳辐射驱动。晚第四纪以来,黄土记录了多次气候干湿波动。多指标的分析结果表明,该区的EASM自早/中更新世以来持续减弱,为EASM对MBE的区域差异响应提供了证据。

尽管取得了一定的成果,但也存在明显不足:(1) 该区长尺度的黄土研究仍然较少,未来的研究需要寻找该区年代更为久远的黄土剖面进行年代学研究,以厘清该区黄土沉积的起始年龄。(2) 古气候定量重建工作是近年来黄土古气候研究的热点和难点,应在充分论证现代过程可靠性的基础上,建立适合区域的表土与现代气候因子的转换方程,尝试进行区域古降水和古温度定量重建。(3) 迄今为止,该区黄土的物源示踪研究仍然相当薄弱,未来要加强该区黄土粉尘物质来源方面的系统研究。

参考文献

[1] Li, Y., Shi, W., Aydin, A., Beroya-Eitner, M.A. and Gao, G. (2020) Loess Genesis and Worldwide Distribution. Earth-Science Reviews, 201, Article ID: 102947.
https://doi.org/10.1016/j.earscirev.2019.102947
[2] An, Z.S., Liu, T., Lu, Y.C., Porter, S.C., Kukla, G., Wu, X.H., et al. (1990) The Long-Term Paleomonsoon Variation Recorded by the Loess-Paleosol Sequence in Central China. Quaternary International, 7, 91-95.
https://doi.org/10.1016/1040-6182(90)90042-3
[3] Ding, Z.L., Derbyshire, E., Yang, S.L., Yu, Z.W., Xiong, S.F. and Liu, T.S. (2002) Stacked 2.6‐ma Grain Size Record from the Chinese Loess Based on Five Sections and Correlation with the Deep‐Sea δ18O Record. Paleoceanography, 17, 5-1-5-21.
https://doi.org/10.1029/2001pa000725
[4] Guo, Z.T., Ruddiman, W.F., Hao, Q.Z., Wu, H.B., Qiao, Y.S., Zhu, R.X., et al. (2002) Onset of Asian Desertification by 22 Myr Ago Inferred from Loess Deposits in China. Nature, 416, 159-163.
https://doi.org/10.1038/416159a
[5] An, Z. (2000) The History and Variability of the East Asian Paleomonsoon Climate. Quaternary Science Reviews, 19, 171-187.
https://doi.org/10.1016/s0277-3791(99)00060-8
[6] Chen, J. and Li, G. (2011) Geochemical Studies on the Source Region of Asian Dust. Science China Earth Sciences, 54, 1279-1301.
https://doi.org/10.1007/s11430-011-4269-z
[7] Sun, Y. and An, Z. (2005) Late Pliocene‐Pleistocene Changes in Mass Accumulation Rates of Eolian Deposits on the Central Chinese Loess Plateau. Journal of Geophysical Research: Atmospheres, 110, D23101.
https://doi.org/10.1029/2005jd006064
[8] 刘东生. 黄土与环境[M]. 北京: 科学出版社, 1985.
[9] 孙建中. 黄土学(上篇) [M]. 香港: 香港考古学会, 2005.
[10] Xie, Y., Kang, C., Chi, Y., Du, H., Wang, J. and Sun, L. (2019) The Loess Deposits in Northeast China: The Linkage of Loess Accumulation and Geomorphic-Climatic Features at the Easternmost Edge of the Eurasian Loess Belt. Journal of Asian Earth Sciences, 181, Article ID: 103914.
https://doi.org/10.1016/j.jseaes.2019.103914
[11] Zeng, L., Lu, H., Yi, S., Stevens, T., Xu, Z., Zhuo, H., et al. (2017) Long-Term Pleistocene Aridification and Possible Linkage to High-Latitude Forcing: New Evidence from Grain Size and Magnetic Susceptibility Proxies from Loess-Paleosol Record in Northeastern China. Catena, 154, 21-32.
https://doi.org/10.1016/j.catena.2017.02.020
[12] Sun, M., Zhang, X., Tian, M., Liu, R., He, Z., Qi, L., et al. (2018) Loess Deposits since Early Pleistocene in Northeast China and Implications for Desert Evolution in East China. Journal of Asian Earth Sciences, 155, 164-173.
https://doi.org/10.1016/j.jseaes.2017.09.013
[13] Yi, S., Buylaert, J., Murray, A.S., Lu, H., Thiel, C. and Zeng, L. (2016) A Detailed Post‐IR IRSL Dating Study of the Niuyangzigou Loess Site in Northeastern China. Boreas, 45, 644-657.
https://doi.org/10.1111/bor.12185
[14] Yi, S., Buylaert, J., Murray, A.S., Thiel, C., Zeng, L. and Lu, H. (2015) High Resolution OSL and Post-IR IRSL Dating of the Last Interglacial-Glacial Cycle at the Sanbahuo Loess Site (Northeastern China). Quaternary Geochronology, 30, 200-206.
https://doi.org/10.1016/j.quageo.2015.02.013
[15] Yi, S., Lu, H. and Stevens, T. (2012) SAR TT-OSL Dating of the Loess Deposits in the Horqin Dunefield (Northeastern China). Quaternary Geochronology, 10, 56-61.
https://doi.org/10.1016/j.quageo.2012.03.011
[16] Zeng, L., Lu, H., Yi, S., Li, Y., Lv, A., Zhang, W., et al. (2016) New Magnetostratigraphic and Pedostratigraphic Investigations of Loess Deposits in Northeast China and Their Implications for Regional Environmental Change during the Mid‐Pleistocene Climatic Transition. Journal of Quaternary Science, 31, 20-32.
https://doi.org/10.1002/jqs.2829
[17] 曾琳, 鹿化煜, 弋双文, 徐志伟, 邱志敏, 杨振宇, 等. 我国东北地区黄土堆积的磁性地层年代与古气候变化[J]. 科学通报, 2011, 56(27): 2267-2275.
[18] Li, G., Chen, J., Ji, J., Yang, J. and Conway, T.M. (2009) Natural and Anthropogenic Sources of East Asian Dust. Geology, 37, 727-730.
https://doi.org/10.1130/g30031a.1
[19] Li, L., Li, G.K., Li, T., Yi, S., Lu, H., Hedding, D.W., et al. (2023) Tracking the Provenance of Aeolian Loess in Northeastern China by Uranium Isotopes. Geochemistry, Geophysics, Geosystems, 24, e2022GC010715.
https://doi.org/10.1029/2022gc010715
[20] Nakano, T. (2004) Regional Sr-Nd Isotopic Ratios of Soil Minerals in Northern China as Asian Dust Fingerprints. Atmospheric Environment, 38, 3061-3067.
https://doi.org/10.1016/j.atmosenv.2004.02.016
[21] Xie, J., Yang, S. and Ding, Z. (2012) Methods and Application of Using Detrital Zircons to Trace the Provenance of Loess. Science China Earth Sciences, 55, 1837-1846.
https://doi.org/10.1007/s11430-012-4428-x
[22] Yin, J., Han, Z., Zeng, Y., Qin, L., Pan, R., Zhou, Y., et al. (2023) The Largest Deflation Basin in Asia Reveals That the Miocene Basin-Filling Sediments in the Eastern Gobi Desert Are an Important Dust Source. Geomorphology, 436, Article ID: 108780.
https://doi.org/10.1016/j.geomorph.2023.108780
[23] Zeng, L., Yi, S., Zhang, W., Feng, H., Lv, A., Zhao, W., et al. (2020) Provenance of Loess Deposits and Stepwise Expansion of the Desert Environment in NE China since ~1.2 Ma: Evidence from Nd-Sr Isotopic Composition and Grain-Size Record. Global and Planetary Change, 185, Article ID: 103087.
https://doi.org/10.1016/j.gloplacha.2019.103087
[24] Zhao, W., Sun, Y., Balsam, W., Zeng, L., Lu, H., Otgonbayar, K., et al. (2015) Clay‐Sized Hf‐Nd‐Sr Isotopic Composition of Mongolian Dust as a Fingerprint for Regional to Hemispherical Transport. Geophysical Research Letters, 42, 5661-5669.
https://doi.org/10.1002/2015gl064357
[25] Lei, F., Wei, H., Yi, S., Zeng, L. and Lu, H. (2021) Variations of the East Asian Monsoon over the Past 800 Kyr Constrained by the Boron Isotope Composition of Paleo-Rainwater Inferred from Loess-Paleosol Deposits in NE China. Earth and Planetary Science Letters, 561, Article ID: 116826.
https://doi.org/10.1016/j.epsl.2021.116826
[26] Lyu, A., Lu, H., Zeng, L., Zhang, H., Zhang, E. and Yi, S. (2018) Vegetation Variation of Loess Deposits in the Southeastern Inner Mongolia, NE China over the Past ∼1.08 Million Years. Journal of Asian Earth Sciences, 155, 174-179.
https://doi.org/10.1016/j.jseaes.2017.11.013
[27] Mu, Y., Qin, X., Zhang, L. and Xu, B. (2016) Holocene Climate Change Evidence from High-Resolution Loess/Paleosol Records and the Linkage to Fire-Climate Change-human Activities in the Horqin Dunefield in Northern China. Journal of Asian Earth Sciences, 121, 1-8.
https://doi.org/10.1016/j.jseaes.2016.01.017
[28] Sheng, M., Jiang, K., Wang, X., Jiang, Z., Tang, L. and Zhou, Z. (2023) Magnetoclimatological Record of Late Pleistocene Loess in the Southern Hunshandake Sandy Land, Inner Mongolia: A Threshold Response to the East Asian Summer Monsoon Variations. Geochemistry, Geophysics, Geosystems, 24, e2023GC010905.
https://doi.org/10.1029/2023gc010905
[29] Zeng, Y., Li, X., Liu, Y., Li, Y., Qin, L., Zhao, C., et al. (2024) Quantification of Holocene Temperatures in the Eastern Hunshandake Sandy Land Using δ13C of Loess Organic Matter. Global and Planetary Change, 237, Article ID: 104457.
https://doi.org/10.1016/j.gloplacha.2024.104457
[30] Zhou, Y., Han, Z., Li, X., Wang, Y., Lv, C., Jiang, M., et al. (2018) Sandy Loess Records of Precipitation Changes and Monsoon Migrations in the Hunshandake Sandy Land since the Last Glacial Maximum. Paleoceanography and Paleoclimatology, 33, 945-957.
https://doi.org/10.1029/2018pa003339
[31] 蒋凯, 王喜生, 盛美. 浑善达克沙地南缘晚更新世黄土-古土壤序列的高分辨率磁性气候记录[J]. 第四纪研究, 2019, 39(3): 565-578.
[32] 鹿化煜, 张红艳, 曾琳, 吕安琪, 张朝晖, 陈英勇, 等. 温度影响东北地区更新世植被变化的黄土记录[J]. 第四纪研究, 2015, 35(4): 828-836.
[33] 吕安琪, 鹿化煜, 曾琳, 弋双文, 卓海昕, 徐志伟, 等. 1.08 Ma以来中国东北赤峰地区黄土粒度变化及其揭示的沙地扩张事件[J]. 中国沙漠, 2017, 37(4): 659-665.
[34] 弋双文, 鹿化煜, 周亚利, 苗晓东. 晚第四纪科尔沁沙地干湿变化的黄土记录[J] 中国沙漠, 2006, 26(6): 869-874.
[35] 中国科学院内蒙古宁夏综合考察队. 内蒙古植被[M]. 北京: 科学出版社, 1985.
[36] 弋双文. 我国东北地区黄土堆积的光释光测年及环境变化[D]: [博士学位论文]. 南京: 南京大学, 2017.
[37] 郭佳宁. 内蒙古宁城中更新世以来黄土磁化率与粒度特征及古环境研究[D]: [硕士学位论文]. 北京: 中国地质大学(北京), 2009.
[38] 曾琳. 中国东北地区1.2 Ma以来的黄土地层和古气候记录[D]: [博士学位论文]. 南京: 南京大学, 2016.
[39] 张文山, 刘金峰, 田全伦. 赤峰南山顶部黄土古地磁事件及其区域地质表现[J] 河北地质学院学报, 1994(3): 236-244.
[40] Snyder, C.W. (2016) Evolution of Global Temperature over the Past Two Million Years. Nature, 538, 226-228.
https://doi.org/10.1038/nature19798
[41] Miller, K.G., Browning, J.V., Schmelz, W.J., Kopp, R.E., Mountain, G.S. and Wright, J.D. (2020) Cenozoic Sea-Level and Cryospheric Evolution from Deep-Sea Geochemical and Continental Margin Records. Science Advances, 6, eaaz1346.
https://doi.org/10.1126/sciadv.aaz1346
[42] Lisiecki, L.E. and Raymo, M.E. (2005) A Pliocene‐Pleistocene Stack of 57 Globally Distributed Benthic δ18O Records. Paleoceanography, 20, [page].
https://doi.org/10.1029/2004pa001071
[43] Chen, F., Xu, Q., Chen, J., Birks, H.J.B., Liu, J., Zhang, S., et al. (2015) East Asian Summer Monsoon Precipitation Variability since the Last Deglaciation. Scientific Reports, 5, PA1003.
https://doi.org/10.1038/srep11186
[44] Wen, R., Xiao, J., Fan, J., Zhang, S. and Yamagata, H. (2017) Pollen Evidence for a Mid-Holocene East Asian Summer Monsoon Maximum in Northern China. Quaternary Science Reviews, 176, 29-35.
https://doi.org/10.1016/j.quascirev.2017.10.008
[45] Xiao, J., Xu, Q., Nakamura, T., Yang, X., Liang, W. and Inouchi, Y. (2004) Holocene Vegetation Variation in the Daihai Lake Region of North-Central China: A Direct Indication of the Asian Monsoon Climatic History. Quaternary Science Reviews, 23, 1669-1679.
https://doi.org/10.1016/j.quascirev.2004.01.005
[46] Kawamura, K., Parrenin, F., Lisiecki, L., Uemura, R., Vimeux, F., Severinghaus, J.P., et al. (2007) Northern Hemisphere Forcing of Climatic Cycles in Antarctica over the Past 360,000 Years. Nature, 448, 912-916.
https://doi.org/10.1038/nature06015
[47] Laskar, J., Robutel, P., Joutel, F., Gastineau, M., Correia, A.C.M. and Levrard, B. (2004) A Long-Term Numerical Solution for the Insolation Quantities of the Earth. Astronomy & Astrophysics, 428, 261-285.
https://doi.org/10.1051/0004-6361:20041335
[48] Wu, P., Xie, Y., Chi, Y., Kang, C., Sun, L., Wei, Z., et al. (2021) Loess Accumulation in Harbin with Implications for Late Quaternary Aridification in the Songnen Plain, Northeast China. Palaeogeography, Palaeoclimatology, Palaeoecology, 570, Article ID: 110365.
https://doi.org/10.1016/j.palaeo.2021.110365
[49] 王松娜, 王旭龙, 康树刚. 中国东北末次冰期松原黄土的释光测年及其古气候意义初探[J] 地球环境学报, 2017, 8(5): 397-406.
https://doi.org/10.7515/JEE201705003
[50] Chalk, T.B., Hain, M.P., Foster, G.L., Rohling, E.J., Sexton, P.F., Badger, M.P.S., et al. (2017) Causes of Ice Age Intensification across the Mid-Pleistocene Transition. Proceedings of the National Academy of Sciences, 114, 13114-13119.
https://doi.org/10.1073/pnas.1702143114
[51] Dyez, K.A., Hönisch, B. and Schmidt, G.A. (2018) Early Pleistocene Obliquity‐Scale pCO2 Variability at ~1.5 Million Years Ago. Paleoceanography and Paleoclimatology, 33, 1270-1291.
https://doi.org/10.1029/2018pa003349
[52] Hönisch, B., Hemming, N.G., Archer, D., Siddall, M. and McManus, J.F. (2009) Atmospheric Carbon Dioxide Concentration across the Mid-Pleistocene Transition. Science, 324, 1551-1554.
https://doi.org/10.1126/science.1171477
[53] Lisiecki, L.E. (2010) A Benthic δ13C‐Based Proxy for Atmospheric pCO2 over the Last 1.5 Myr. Geophysical Research Letters, 37, L21708.
https://doi.org/10.1029/2010gl045109
[54] Yan, Y., Bender, M.L., Brook, E.J., Clifford, H.M., Kemeny, P.C., Kurbatov, A.V., et al. (2019) Two-Million-Year-Old Snapshots of Atmospheric Gases from Antarctic Ice. Nature, 574, 663-666.
https://doi.org/10.1038/s41586-019-1692-3
[55] Yang, S. and Ding, Z. (2008) Advance-Retreat History of the East-Asian Summer Monsoon Rainfall Belt over Northern China during the Last Two Glacial-Interglacial Cycles. Earth and Planetary Science Letters, 274, 499-510.
https://doi.org/10.1016/j.epsl.2008.08.001
[56] Stevens, T., Buylaert, J.-., Thiel, C., Újvári, G., Yi, S., Murray, A.S., et al. (2018) Ice-Volume-Forced Erosion of the Chinese Loess Plateau Global Quaternary Stratotype Site. Nature Communications, 9, Article No. 983.
https://doi.org/10.1038/s41467-018-03329-2
[57] Wu, P., Xie, Y., Chi, Y., Wang, Y. and Liu, R. (2024) Temperature Controls on the C4 Plants Expansion in the Mid-Latitudes and Its Ecological Implications for Dryland Paleoclimatic Reconstruction: A Stable Carbon Isotope Perspective. Earth-Science Reviews, 249, Article ID: 104678.
https://doi.org/10.1016/j.earscirev.2024.104678
[58] Gao, X., Hao, Q., Wang, L., Song, Y., Ge, J., Wu, H., et al. (2024) Changes in Monsoon Precipitation in East Asia under a 2 ˚C Interglacial Warming. Science Advances, 10, eadm7694.
https://doi.org/10.1126/sciadv.adm7694
[59] Lu, H., Liu, W., Yang, H., Wang, H., Liu, Z., Leng, Q., et al. (2019) 800-kyr Land Temperature Variations Modulated by Vegetation Changes on Chinese Loess Plateau. Nature Communications, 10, Article No. 1958.
https://doi.org/10.1038/s41467-019-09978-1