[1]
|
Czap, J. and Jendrol’, S. (2017) Facially-constrained Colorings of Plane Graphs: A Survey. Discrete Mathematics, 340, 2691-2703. https://doi.org/10.1016/j.disc.2016.07.026
|
[2]
|
Zykov, A.A. (1974) Hypergraphs. Russian Mathematical Surveys, 29, 89-156. https://doi.org/10.1070/rm1974v029n06abeh001303
|
[3]
|
Ku¨ndgen, A. and Ramamurthi, R. (2002) Coloring Face-Hypergraphs of Graphs on Surfaces. Journal of Combinatorial Theory, Series B, 85, 307-337. https://doi.org/10.1006/jctb.2001.2107
|
[4]
|
Nakamoto, A., Negami, S., Ohba, K. and Suzuki, Y. (2016) Looseness and Independence Number of Triangulations on Closed Surfaces. Discussiones Mathematicae Graph Theory, 36, 545-554. https://doi.org/10.7151/dmgt.1870
|
[5]
|
Negami, S. (2005) Looseness Ranges of Triangulations on Closed Surfaces. Discrete Mathe- matics, 303, 167-174. https://doi.org/10.1016/j.disc.2005.01.010
|
[6]
|
Enami, K., Ozeki, K. and Yamaguchi, T. (2021) Proper Colorings of Plane Quadrangulations without Rainbow Faces. Graphs and Combinatorics, 37, 1873-1890. https://doi.org/10.1007/s00373-021-02350-5
|
[7]
|
Dvoˇr´ak, Z., Z., Jendrol’, S., Kral’, D. and Pap, G. (2009) Matchings and Nonrainbow Colorings. SIAM Journal on Discrete Mathematics, 23, 344-348. https://doi.org/10.1137/060675927
|
[8]
|
Jendrol’, S. (2006) Rainbowness of Cubic Plane Graphs. Discrete Mathematics, 306, 3321- 3326. https://doi.org/10.1016/j.disc.2006.06.012
|
[9]
|
Jendrol’, S. and Schro¨tter, Sˇ. (2008) On Rainbowness of Semiregular Polyhedra. Czechoslovak Mathematical Journal, 58, 359-380. https://doi.org/10.1007/s10587-008-0021-z
|
[10]
|
Alon, N. (1983) On a Conjecture of Erdo˝s, Simonovits, and S´os Concerning AntiTheorems. Journal of Graph Theory, 7, 91-94. https://doi.org/10.1002/jgt.3190070112
|
[11]
|
Axenovich, M. and Ku¨ndgen, A. (2001) On a Generalized Anti-Ramsey Problem. Combina- torica, 21, 335-349. https://doi.org/10.1007/s004930100000
|
[12]
|
Burr, S.A., Erdo˝s, P., Graham, R.L. and T. S´os, V. (1989) Maximal Antiramsey Graphs and the Strong Chromatic Number. Journal of Graph Theory, 13, 263-282. https://doi.org/10.1002/jgt.3190130302
|
[13]
|
Erdo˝s, P., Simonovits, M. and Sos, V.T. (1975) Anti-Ramsey Theorems. In: Hajnal, A., Rado, R. and S´os, V.T., Eds., Infinite and Finite Sets: To Paul Erd˝os on His 60th Birthday, North- Holland, 633-643.
|
[14]
|
Jiang, T. (2002) Edge-Colorings with No Large Polychromatic Stars. Graphs and Combina- torics, 18, 303-308. https://doi.org/10.1007/s003730200022
|
[15]
|
Jiang, T. and West, D. (2003) On the Erdo˝s-Simonovits-So´s Conjecture about the Anti-Ramsey Number of a Cycle. Combinatorics, Probability and Computing, 12, 585-598. https://doi.org/10.1017/s096354830300590x
|
[16]
|
Jiang, T. and West, D.B. (2004) Edge-Colorings of Complete Graphs That Avoid Polychro- matic Trees. Discrete Mathematics, 274, 137-145. https://doi.org/10.1016/j.disc.2003.09.002
|
[17]
|
Simonovits, M. and S´os, V.T. (1984) On Restricted Colourings of Kn. Combinatorica, 4, 101- 110. https://doi.org/10.1007/bf02579162
|
[18]
|
Diwan, A.A. (2002) Disconnected 2-Factors in Planar Cubic Bridgeless Graphs. Journal of Combinatorial Theory, Series B, 84, 249-259. https://doi.org/10.1006/jctb.2001.2079
|
[19]
|
Dvoˇr´ak, Z. and Kra´l’, D. (2001) On Planar Mixed Hypergraphs. The Electronic Journal of Combinatorics, 8, R35. https://doi.org/10.37236/1579
|
[20]
|
Kobler, D. and Ku¨ndgen, A. (2001) Gaps in the Chromatic Spectrum of Face-Constrained Plane Graphs. The Electronic Journal of Combinatorics, 8, N3. https://doi.org/10.37236/1588
|
[21]
|
Ku¨ndgen, A., Mendelsohn, E. and Voloshin, V. (2000) Colouring Planar Mixed Hypergraphs. The Electronic Journal of Combinatorics, 7, R60. https://doi.org/10.37236/1538
|
[22]
|
Penaud, J.G. (1975) Une Propri´et´e De Bicoloration Des Hypergraphes Planaires. Cahiers Cen- tre Etudes Recherche Op´er, 17, 345-349.
|
[23]
|
Ramamurthi, R. and West, D.B. (2004) Maximum Face-Constrained Coloring of Plane Graphs. Discrete Mathematics, 274, 233-240. https://doi.org/10.1016/j.disc.2003.09.001
|
[24]
|
Thomassen, C. (1994) Gro¨tzsch’s 3-Color Theorem and Its Counterparts for the Torus and the Projective Plane. Journal of Combinatorial Theory, Series B, 62, 268-279. https://doi.org/10.1006/jctb.1994.1069
|
[25]
|
Kra´l’, D. (2004) On Maximum Face-Constrained Coloring of Plane Graphs with No Short Face Cycles. Discrete Mathematics, 277, 301-307. https://doi.org/10.1016/j.disc.2003.08.001
|
[26]
|
Jungi´c, V., Kra´l’, D. and Sˇkrekovski, R. (2006) Colorings of Plane Graphs with No Rainbow Faces. Combinatorica, 26, 169-182. https://doi.org/10.1007/s00493-006-0012-3
|
[27]
|
Dvoˇr´ak, Z., Kra´l/, D. and Sˇkrekovski, R. (2009) NonColorings of 34and 5Plane Graphs. Journal of Graph Theory, 63, 129-145. https://doi.org/10.1002/jgt.20414
|
[28]
|
West, D.B. (2011) A Short Proof of the Berge-Tutte Formula and the Gallai-Edmonds Struc- ture Theorem. European Journal of Combinatorics, 32, 674-676. https://doi.org/10.1016/j.ejc.2011.01.009
|