股四头肌肌肉内脂肪浸润与KOA患者临床严重程度和运动功能相关性研究
The Correlation between Intramuscular Fat Infiltration of the Quadriceps Femoris and Clinical Severity and Motor Function in KOA Patients
DOI: 10.12677/acm.2025.151035, PDF, HTML, XML,   
作者: 周昕洁, 张懿婧, 高新迪:青岛大学青岛医学院,山东 青岛;董 悦:青岛大学附属医院康复医学二科,山东 青岛;李铁山*:青岛大学青岛医学院,山东 青岛;青岛大学附属医院康复医学二科,山东 青岛
关键词: 膝骨关节炎股四头肌肌肉内脂肪浸润肌骨超声回声强度Knee Osteoarthritis Quadriceps Muscle Intramuscular Fat Musculoskeletal Ultrasound Echo Intensity
摘要: 目的:探究膝关节骨性关节炎(Knee osteo arthritis, KOA)患者单个股四头肌回声强度与临床严重程度的关系。方法:招募2023年10月至2024年05月在青岛大学附属医院就诊的55例单侧KOA患者,使用肌骨超声评估股四头肌(Quadriceps Femoris, QF)回声强度(Echo Intensity, EI),EI包括直接测得EI及使用皮下脂肪校正后的EI。膝关节损伤和骨关节炎结果评分(Knee Injury and Osteoarthritis Outcome Score, KOOS)用于评估患者膝关节功能及症状。5次起坐试验、起立行走测试以及5米步行测试用于评估患者运动功能。采用相关分析及回归分析,以阐明股四头肌EI与KOA患者临床严重程度之间的关系。结果:与健侧相比,KOA患者患侧股四头肌四块肌肉的EI均明显增高(p < 0.05)。KOA患者股四头肌EI,尤其是股内侧肌(Vastus Medialis, VM)的EI,与患者运动功能以及KOOS症状、疼痛及日常生活能力呈显著相关。多元线性回归分析表明,VM校正后的EI与KOOS症状[B = −0.157; 95%CI, −0.247~−0.066; p = 0.001]、疼痛[B = −0.200; 95%CI, −0.349~−0.051; p = 0.009]、日常生活能力[B = −0.214; 95%CI, −0.327~−0.100; p < 0.001]、5CST [B = −0.028; 95%CI, 0.012~0.044; p = 0.001]和5MWT [B = 0.013; 95%CI, 0.001~0.025; p = 0.032]显著相关。RI校正后的EI与KOOS症状[B = −0.122; 95%CI, −0.229~−0.015; p = 0.026]和TUG [B = 0.019; 95%CI, 0.002~0.035; p = 0.029]显著相关。RF校正后的EI与5MWT [B = 0.017; 95%CI, 0.002~0.033; p = 0.029]显著相关。结论:KOA患者股四头肌,特别是股内侧肌回声强度增加,会导致膝关节疼痛、症状加重和日常功能障碍。
Abstract: Objective: To investigate the relationship between the echo intensity (EI) of the quadriceps femoris (QF) muscle and clinical severity in patients with knee osteoarthritis (KOA). Methods: Fifty-five unilateral KOA patients were recruited, and the EI of the QF muscle was assessed using musculoskeletal ultrasound, incorporating both the direct measurement of EI and the subcutaneous fat-corrected EI. The Knee Injury and Osteoarthritis Outcome Score (KOOS) was used to evaluate knee joint function and symptoms, while the 5-times sit-to-stand test (5CST), timed up and go test (TUG), and 5-meter walk test (5MWT) were employed to assess motor function. Results: The EI of the affected quadriceps femoris in KOA patients was significantly higher than that of the unaffected side (p < 0.05). Specifically, the vastus medialis (VM) showed a strong correlation with motor function as well as with KOOS domains covering symptoms, pain, and activities of daily living (ADL). Multiple regression analysis revealed that the corrected EI of the VM was significantly associated with KOOS symptoms [B = −0.157; 95% CI, −0.247 to −0.066; p = 0.001], pain [B = −0.200; 95% CI, −0.349 to −0.051; p = 0.009], ADL [B = −0.214; 95% CI, −0.327 to −0.100; p < 0.001], 5CST [B = −0.028; 95% CI, 0.012 to 0.044; p = 0.001], and 5MWT [B = 0.013; 95% CI, 0.001 to 0.025; p = 0.032]. Furthermore, the corrected EI of the rectus intermedius (RI) was significantly associated with KOOS symptoms [B = −0.122; 95% CI, −0.229 to −0.015; p = 0.026] and TUG [B = 0.019; 95% CI, 0.002 to 0.035; p = 0.029]. Similarly, the corrected EI of the rectus femoris (RF) was significantly correlated with the 5MWT [B = 0.017; 95% CI, 0.002 to 0.033; p = 0.029]. Conclusion: In patients with knee osteoarthritis (KOA), increased echo intensity in the quadriceps femoris, particularly within the vastus medialis, is significantly associated with knee pain, symptom progression, and impairments in daily functional activities.
文章引用:周昕洁, 张懿婧, 高新迪, 董悦, 李铁山. 股四头肌肌肉内脂肪浸润与KOA患者临床严重程度和运动功能相关性研究[J]. 临床医学进展, 2025, 15(1): 235-244. https://doi.org/10.12677/acm.2025.151035

1. 引言

膝关节骨性关节炎(Knee osteoarthritis, KOA)是最常见的骨关节炎,发病率在75岁以上人群中接近80% [1]-[3]。KOA是一种全关节退行性疾病,其主要的危险因素包括高龄、肥胖、既往膝关节损伤、膝关节无力等[4]。股四头肌(Quadriceps Femoris, QF)为膝关节主要的伸膝肌群,QF无力是致病的危险因素之一,也是导致KOA患者功能残疾和症状恶化的重要原因,与患者更重的疼痛及更差的运动功能表现差密切相关[5] [6]

肌肉内脂肪浸润增加是导致肌肉力量下降的重要原因[7] [8]。有研究指出,股四头肌肌肉内脂肪浸润与其等长肌力[7]及等速肌力[9]密切相关[8]。此外,高水平的肌肉脂肪浸润还与膝关节疼痛和骨关节炎的进展密切相关[10] [11]。肌骨超声是一种无辐射、便携且廉价的工具,可以通过回声强度(Echo intensity, EI)量化肌肉内脂肪与肌肉的比率,间接反映肌肉质量[12] [13],正逐渐成为KOA患者管理中的重要评估工具。本研究旨在通过横断面研究探讨KOA患者股四头肌超声测量的EI与其临床严重程度和运动功能表现的关系,以期为KOA患者临床严重程度和运动功能表现的临床评估提供影像学支持。

2. 对象与方法

2.1. 确定研究对象

选取2023年10月至2024年05月在青岛大学附属医院招募符合美国风湿病学会和欧洲抗风湿联盟制定的KOA诊断标准的患者。本研究通过了青岛大学附属医院医学伦理委员会的审核批准。KOA诊断标准:根据美国风湿病学会和欧洲抗风湿联盟制定的KOA诊断标准[14]:① 近1个月内反复出现膝关节疼痛;② X线片(站立或负重位)示膝关节间隙变窄、关节边缘骨赘形成、软骨下硬化(或)囊性变;③ 年龄 ≥ 48岁;④ 晨僵 ≤ 30 min;⑤ 活动时有骨摩擦音;综合患者临床症状及X线影像学检查,满足上述诊断标准的① + ②、③、④、⑤中的任意2条,即可诊断为KOA。纳入标准:① 符合上述诊断标准的单侧KOA患者;② 膝关节疼痛病程超过3个月的慢性疼痛患者;③ 近1月内未接受膝骨关节炎相关治疗;④ 膝关节疼痛VAS评分 ≥ 5分;⑤ KOA患者症状侧为患侧,另一侧为健侧。排除标准:① 严重的基础疾病(如控制不佳的高血压、心脏病等);② 其他类型的关节炎,如类风湿性关节炎;③ 既往膝关节手术史;④ 合并认知障碍等精神障碍,不能配合的患者。

2.2. 研究方法

2.2.1. 超声肌肉EI测量

测量股四头肌EI时,使患者仰卧于检查床上,双腿完全自然伸展处于中立位,肌肉放松。股中间肌和股直肌测量位置位于髂前上棘与髌骨近端中间。股外侧肌于大转子和股骨外侧上髁之间的中点处测量。在大转子和股骨外上髁之间距离30%处测量股内侧肌相关参数[15]。使用B型超声成像(Midray,中国)和线性阵列探头(8~12 MHz)获得横向超声图像。范围为69分贝,增益为58分贝。扫描深度随肌肉厚度动态调节,过去的研究表明,基于成像深度的EI没有显著差异[16]。时间增益补偿调整到中性位置。焦点数量增加到最大。探头涂有足够的水溶性传输凝胶,用于声学耦合,使探头垂直于被检查的肌肉而不使其产生形变。

回声强度(echo intensity, EI)指的是超声波离开感兴趣结构的反射率,可通过超声图像内的单个像素的灰度密度分析来量化。使用ImageJ程序(版本:1.54f)测量感兴趣区域的EI值。最大的感兴趣区域(ROI)使用多边形确定,包括尽可能多的肌肉并避开其他组织,如骨骼和周围筋膜。将图像灰度表示为0 (黑色)和255 (白色)之间的值,使用标准灰度直方图函数确定平均EI [17]。将校正因子应用于EI,以说明SCFT对回波测量的影响[13]

2.2.2. KOA患者功能评定指标

KOA严重程度评分包括:① 疼痛视觉模拟评分(Visual analogue scale, VAS):是一种有效的评估KOA疼痛的测评方法,范围从0分(没有疼痛)到10分(难以忍受的最严重的疼痛)进行评分;② 膝关节损伤和骨关节炎结果评分(Knee Injury and Osteoarthritis Outcome Score, KOOS):主要包括五个方面:疼痛(9项),症状(7项),日常活动(17项),运动和娱乐功能(5项)和膝关节相关的生活质量(4项)。每项均为100分,得分越低,提示患者膝关节功能越差。运动功能评分包括:① 起立行走试验(Timed Up and Go Test, TUG)让患者坐在45厘米高的椅子上,听到指令后起立并移动3米,然后转身回到椅子上,以舒适的速度再次坐下[18]。使用秒表(0.01秒)记录完成测试所用的时间。② 五次坐站试验(5 chair stand test, 5CST)受试者坐在椅子上(座位高度45厘米),双臂交叉放在胸前(站立时完全不使用上肢力量),双脚分开与肩同宽。患者完全起立,然后尽快坐下,重复五次,在整个测试过程中,可口头鼓励患者,使其尽快完成动作。在最后一次完全站立时停止计时。使用秒表(0.01秒)记录完成测试所用的时间[19]。③ 5米步行时间(5-m maximal walking test, 5MWT)在距离起跑线(0米)的1、6和7米(终点线)的地板上贴四条平行线。使受试者以最大的努力从起跑线走向终点线,记录在1米和6米线之间行走的时间[20],精确到0.01 s。

2.3. 统计学分析方法

本研究应用SPSS26.0统计软件进行数据统计分析。采用描述性统计数据记录患者的人口统计特征,对计量资料进行正态分布和方差齐性检验,符合正态分布且方差齐的计量资料采用均数 ± 标准差( x ¯ ±s )表示,两组采用配对t检验,否则采用Wilcoxon符号秩检验。采用Pearson相关分析用于确定QF回声强度与临床严重程度及运动功能等变量之间的相关性。根据相关分析结果,采用回归分析,以具有显著相关性(r > 0.3)的股四头肌EI为自变量,问卷结果及运动功能为因变量,研究其是否具有因果关系。均以p < 0.05作为差异具有统计学意义。

3. 结果

3.1. 患者一般资料

在排除了7名超声图像模糊或临床数据缺失的受试者后,55名KOA患者纳入。其中男性12名,女性43名,平均年龄(64.53 ± 8.49)岁。

3.2. 健侧及患侧QF回声强度比较

患侧股直肌EI (94.28 ± 2.55), 股中间肌EI (112.48 ± 25.22),股内侧肌EI (102.20 ± 23.73),股外侧肌EI (91.00 ± 22.54),健侧股直肌EI (9.84 ± 26.93), 股中间肌EI (107.10 ± 27.32),股内侧肌EI (97.96 ± 27.02),股外侧肌EI (88.67 ± 32.86),健侧股四头肌各肌肉EI均明显小于患侧(p < 0.05)。

3.3. QF回声强度与患者临床严重程度的相关分析

Pearson相关性分析结果显示,患者股直肌、股中间肌和VM的EI越高,与患者三项功能测试时间越长有关,VM回声强度与5CST (r = 0.440)、TUG (r = 0.382)和5MWT (r = 0.509)均显示出显著的正相关性(p均<0.01)。校正后的EI值与患者运动功能均表现出更强的相关性。如表1所示。

患者股四头肌的EI与患者KOOS症状、疼痛和日常生活能力评分呈现显著负相关,在使用皮下脂肪厚度进行回声强度的校正后,这种相关性更为显著(p均<0.01)。如表2所示。

3.4. KOA患者QF回声强度与运动功能的回归分析

根据Pearson相关分析结果,以校正后的股四头肌回声强度为自变量,患者运动功能能力及KOOS评分为因变量进行线性回归分析。结果显示,VM校正后的EI与5CST (B = 0.028;95%CI,0.012至0.044;p = 0.001)、5MWT (B = 0.013;95%CI,0.001至0.025;p = 0.032)、KOOS症状(B = −0.157;95%CI,−0.247至−0.066;p = 0.001)、疼痛(B = −0.200;95%CI,−0.349至−0.051;p = 0.009)和日常生活能力(B = −0.214;95%CI,−0.327至−0.100;p < 0.001)显著相关。股直肌校正后的EI与5MWT显著相关,股中间肌校正后的EI与KOOS症状评分显著相关。在回归分析中,没有与股外侧肌校正后EI显著相关的变量。如表3表4所示。

Table 1. Correlation coefficients between EI value and corrected EI value of quadriceps femoris and CST, TUG, 5MWT in patients with KOA (n = 55)

1. KOA患者股四头肌EI值及校正EI值与CST、TUG、5MWT之间的相关系数(n = 55)

5CST

TUG

5M

回声强度

RF

0.228

0.409**

0.565**

RI

0.188

0.419**

0.291**

VM

0.440**

0.382**

0.509**

VL

−0.167

0.153

0.124

校正回声强度

RF

0.461**

0.540**

0.603**

RI

0.455**

0.595**

0.476**

VM

0.612**

0.487**

0.594**

VL

0.237

0.423**

0.384**

注:EI,回声强度;RF,股直肌;RI,股中间肌;VM,股内侧肌;VL,股外侧肌;5CST,5次起坐试验;TUG,起立行走测试;5MWT,5米步行测试;*p < 0.05,**p < 0.01。

Table 2. Correlation coefficients between EI value and corrected EI value of quadriceps femoris and KOOS in patients with KOA (n = 55)

2. KOA患者股四头肌EI值及校正EI值与KOOS之间的相关系数(n = 55)

KOOS症状

KOOS疼痛

KOOS日常生活 能力

KOOS运动和 娱乐活动

KOOS生活质量

回声强度

RF

−0.362**

−0.427**

−0.430**

−0.173

−0.107

RI

−0.437**

−0.315**

−0.325**

−0.062

0.060

VM

−0.601**

−0.578**

−0.674**

−0.213

0.182

VL

−0.227

−0.240

−0.339**

−0.030

−0.012

校正回声强度

RF

−0.486**

−0.476**

−0.602**

−0.260

0.170

RI

−0.593**

−0.449**

−0.582**

−0.207

0.152

VM

−0.655**

−0.586**

−0.740**

−0.241

0.201

VL

−0.487**

−0.432**

−0.630**

−0.178

0.111

注:EI,回声强度;RF,股直肌;RI,股中间肌;VM,股内侧肌;VL,股外侧肌;KOOS,膝关节损伤与骨关节炎结果评分;*p < 0.05,**p < 0.01。

Table 3. The relationship between quadriceps correction EI and CST, TUG, 5MWT in patients with KOA (n = 55)

3. 股四头肌校正EI与KOA患者CST、TUG、5MWT的关系(n = 55)

B

95%CI

β

p-value

5CST

RF-EI校正

−0.004

[−0.026, 0.018]

−0.076

0.719

RI-EI校正

0.004

[−0.015, 0.024]

0.08

0.677

VM-EI校正

0.028**

[0.012, 0.044]

0.614

0.001

TUG

RF-EI校正

0.006

[−0.012, 0.025]

0.146

0.505

RI-EI校正

0.019*

[0.002, 0.035]

0.450

0.029

VM-EI校正

0.003

[−0.011, 0.017]

0.091

0.631

VL-EI校正

−0.002

[−0.017, 0.012]

−0.054

0.756

5MWT

RF-EI校正

0.017*

[0.002, 0.033]

0.47

0.029

RI-EI校正

−0.002

[−0.016, 0.012]

−0.062

0.746

VM-EI校正

0.013*

[0.001, 0.025]

0.399

0.032

VL-EI校正

−0.007

[−0.019 ,0.006]

−0.178

0.285

注:EI,回声强度;RF,股直肌;RI,股中间肌;VM,股内侧肌;VL,股外侧肌;5CST,5次起坐试验;TUG,起立行走测试;5MWT,5米步行测试;*p < 0.05,**p < 0.01。

Table 4. The relationship between quadriceps correction EI and KOOS symptoms, pain, and daily living ability in patients with KOA (n = 55)

4. 股四头肌校正EI与KOOS症状、疼痛、日常生活能力的关系(n = 55)

B

95%CI

β

p-value

症状-KOOS

RF-EI校正

0.092

[−0.026, 0.211]

0.307

0.125

RI-EI校正

−0.122*

[−0.229, −0.015]

−0.414

0.026

VM-EI校正

−0.157**

[−0.247, −0.066]

−0.592

0.001

VL-EI校正

−0.002

[−0.097, 0.093]

−0.007

0.964

疼痛-KOOS

RF-EI校正

−0.010

[−0.205, 0.186]

−0.022

0.921

RI-EI校正

−0.018

[−0.194, 0.158]

−0.041

0.841

VM-EI校正

−0.200**

[−0.349, −0.051]

−0.520

0.009

VL-EI校正

−0.013

[−0.169, 0.144]

−0.029

0.869

日常生活能力-KOOS

RF-EI校正

0.017

[−0.131, 0.166]

0.042

0.815

RI-EI校正

−0.018

[−0.152, 0.116]

−0.044

0.788

VM-EI校正

−0.214***

[−0.327, −0.100]

−0.586

0

VL-EI校正

−0.094

[−0.214, 0.025]

−0.224

0.119

注:EI,回声强度;RF,股直肌;RI,股中间肌;VM,股内侧肌;VL,股外侧肌;KOOS,膝关节损伤与骨关节炎结果评分;*p < 0.05,**p < 0.01。

4. 讨论

我们的研究结果显示,与健侧相比,KOA患者患侧QF四块肌肉的回声强度均更低。Li等人也发现,与KOA患者健侧相比,患侧股直肌回声强度显著增高,而其他肌肉回声强度无显著差异[21]。Taniguchi等人研究发现,与健康对照组相比,KL分级 ≥ 2级的患者VM回声强度显著增加;KL分级 ≥ 3级的患者股中间肌回声强度显著增加[22]。这提示我们,KOA患者存在QF肌肉与脂肪比率的改变,超声可识别这些肌肉成分的变化。

QF是重要的伸膝肌,在行走和跑步时,它能吸收地面反作用力产生的冲击,从而减少对膝关节的直接压力[6]。此外,QF与腘绳肌协同作用,在行走过程中,通过限制横向髁部抬起和横向平面剪切力的产生,进一步提高膝关节的动态稳定性。因此,股四头肌在控制膝关节运动、维持膝关节稳定和减震方面起着关键作用。KOA的一个可能原因是肌肉力量下降影响了关节负荷和运动调节,进而影响软骨稳态,增加退行性变化的易感性,对膝关节健康产生负面影响[23]。研究表明,QF力量减弱与KOA发病风险增加及进展相关。Britt等人通过系统综述和荟萃分析表明,随访至少2年后,伸膝肌无力的男性与女性受试者KOA发病率显著增加[24] [25]。其他研究也显示,QF质量与症状性KOA有关,在女性中,肌肉力量的下降与KOA症状的进展同时发生[26]。由此可见,QF在KOA形成以及其发展过程中发挥着重要作用。

脂肪与肌肉的比率,即肌肉内脂肪浸润,可反映肌肉质量。肌骨超声成像技术是一项基于高频声波的成像方法,通过探头接收不同的回波信号来形成图像。皮下脂肪的厚度会影响超声波的传播,较厚的皮下脂肪会导致超声波衰减,从而使得肌肉呈现出更低的回声强度,影响对肌肉内脂肪浸润的准确判断。为了减小皮下脂肪厚度对肌肉回声强度的影响,Young等人建立了针对皮下脂肪厚度的校正方程,应用校正方程后,肌肉回声强度显示出与MRI测量的肌内脂肪百分比更强的相关性(校正前股直肌,r = 0.79,校正后股直肌,r = 0.91) [13]。因此,我们使用Young等人的校正方程对股四头肌EI进行了分析。

我们的研究发现,可反映肌肉质量的QF回声强度与KOA患者的运动功能(如5CST、TUG、5MWT)密切相关,特别是股内侧肌EI。与我们的发现一致,一项针对老年人群的研究也发现,QF的EI与5MWT有关[27]。Karapinar等人研究了96名KOA女性患者,发现QF四部分的EI与患者运动功能显著相关(包括5CST、20米步行测试及爬楼梯测试) [28]。Merve等人研究也发现,股直肌、股中间肌和股内侧肌的EI增加与KOA患者的20米步行测试及爬楼梯测试时间更长有关[29]。这些结果表明,QF的回声强度在反映KOA患者运动功能方面具有重要的临床意义。

此外,我们的研究还发现,QF的回声强度与KOA患者的临床严重程度密切相关。Taniguchi等人使用MRI评估KOA患者QF肌肉内脂肪浸润,发现QF,特别是VM的肌肉内脂肪浸润与KSS (Knee Scoring System,膝关节评分系统)功能评分和症状评分显著相关[30]。Karapinar等人的研究表明,女性KOA患者股直肌、VM与股外侧肌回声强度与患者KOOS日常生活能力及运动和娱乐活动评分均显著相关[28]。然而,与我们的研究不同的是,Chopp等人发现,股直肌和股外侧肌回声强度与KOOS各部分评分均无显著相关,这可能与该研究纳入的KOA患者样本较少有关。这些发现强调了QF回声强度在评估KOA患者临床严重程度时的临床参考价值。

本研究发现,在QF的四块肌肉中,其中VM回声强度增高与KOA患者运动功能更差及临床严重程度更重均显示出更显著的相关性,这一现象可能与关节源性肌肉抑制有关[31]。关节源性肌肉抑制是一种由神经抑制引起的肌肉激活缺陷,通常与关节肿胀、炎症反应及疼痛等损伤有关。动物模型表明,肿胀引起的关节扩张增加了Ib型和II型传入神经纤维的募集,最终对脊髓中的α运动神经元产生抑制作用[32] [33]。由于III型和IV型传入伤害感受器的激活,疼痛也被发现对α运动神经元具有类似的抑制作用[34]。将少量盐水被注射到健康个体的关节中,在没有疼痛或组织损伤的情况下,也观察到运动输出的减少[35] [36],从而使肌肉激活收到抑制[31]。膝关节内侧通常是负重的主要部位,长期的压力可能会导致该区域损伤加重,炎症反应也常集中在损伤最严重的区域,因此VM更多地发生关节源性肌肉抑制,这可能是KOA患者VM脂肪浸润与患者自我报告的临床严重程度及运动功能显著相关的原因[13]。本研究结果表明,VM脂肪浸润与KOA患者的功能表现之间存在显著关联性。

5. 不足及展望

我们的研究也有一些局限性:① 样本量较小,未能将KOA患者早期及晚期进行分层研究;② 本研究为横断面研究,无法进一步研究肌肉结构参数与患者自我报告的症状及活动能力之间的因果关系;③ Young等人的EI校正公式是基于对四块肌肉的研究创建的,这些肌肉在股四头肌中仅包括股直肌,且该研究是使用平均年龄小于30岁的五名受试者的数据开发的,因此,将此校正公式应用于我们的样本,可能有一定的影响,开发针对老年人的校正公式可能使结果更加可靠。

6. 结论

综上所述,本研究发现肌肉内脂肪浸润特别是股内侧肌(VM)的脂肪浸润(可由回声强度反映)与患者的运动功能和临床严重程度密切相关。这一发现为超声作为KOA评估和监测的影像学工具提供了重要依据。未来的干预策略应针对提高QF肌肉质量,以改善KOA患者的功能表现和生活质量。

NOTES

*通讯作者。

参考文献

[1] Cui, A., Li, H., Wang, D., Zhong, J., Chen, Y. and Lu, H. (2020) Global, Regional Prevalence, Incidence and Risk Factors of Knee Osteoarthritis in Population-Based Studies. EClinicalMedicine, 29, Article ID: 100587.
https://doi.org/10.1016/j.eclinm.2020.100587
[2] Yue, L. and Berman, J. (2022) What Is Osteoarthritis? JAMA, 327, 1300.
https://doi.org/10.1001/jama.2022.1980
[3] Martel-Pelletier, J., Barr, A.J., Cicuttini, F.M., Conaghan, P.G., Cooper, C., Goldring, M.B., et al. (2016) Osteoarthritis. Nature Reviews Disease Primers, 2, Article No. 16072.
https://doi.org/10.1038/nrdp.2016.72
[4] Silverwood, V., Blagojevic-Bucknall, M., Jinks, C., Jordan, J.L., Protheroe, J. and Jordan, K.P. (2015) Current Evidence on Risk Factors for Knee Osteoarthritis in Older Adults: A Systematic Review and Meta-Analysis. Osteoarthritis and Cartilage, 23, 507-515.
https://doi.org/10.1016/j.joca.2014.11.019
[5] Luc-Harkey, B.A., Safran-Norton, C.E., Mandl, L.A., Katz, J.N. and Losina, E. (2018) Associations among Knee Muscle Strength, Structural Damage, and Pain and Mobility in Individuals with Osteoarthritis and Symptomatic Meniscal Tear. BMC Musculoskeletal Disorders, 19, Article No. 258.
https://doi.org/10.1186/s12891-018-2182-8
[6] Bennell, K.L., Wrigley, T.V., Hunt, M.A., Lim, B. and Hinman, R.S. (2013) Update on the Role of Muscle in the Genesis and Management of Knee Osteoarthritis. Rheumatic Disease Clinics of North America, 39, 145-176.
https://doi.org/10.1016/j.rdc.2012.11.003
[7] Fukumoto, Y., Ikezoe, T., Yamada, Y., Tsukagoshi, R., Nakamura, M., Mori, N., et al. (2011) Skeletal Muscle Quality Assessed from Echo Intensity Is Associated with Muscle Strength of Middle-Aged and Elderly Persons. European Journal of Applied Physiology, 112, 1519-1525.
https://doi.org/10.1007/s00421-011-2099-5
[8] Lopez, P., Wilhelm, E.N., Rech, A., Minozzo, F., Radaelli, R. and Pinto, R.S. (2016) Echo Intensity Independently Predicts Functionality in Sedentary Older Men. Muscle & Nerve, 55, 9-15.
https://doi.org/10.1002/mus.25168
[9] Cadore, E.L., Izquierdo, M., Conceição, M., Radaelli, R., Pinto, R.S., Baroni, B.M., et al. (2012) Echo Intensity Is Associated with Skeletal Muscle Power and Cardiovascular Performance in Elderly Men. Experimental Gerontology, 47, 473-478.
https://doi.org/10.1016/j.exger.2012.04.002
[10] Raynauld, J., Pelletier, J., Roubille, C., Dorais, M., Abram, F., Li, W., et al. (2015) Magnetic Resonance Imaging-Assessed Vastus Medialis Muscle Fat Content and Risk for Knee Osteoarthritis Progression: Relevance from a Clinical Trial. Arthritis Care & Research, 67, 1406-1415.
https://doi.org/10.1002/acr.22590
[11] Dannhauer, T., Ruhdorfer, A., Wirth, W. and Eckstein, F. (2015) Quantitative Relationship of Thigh Adipose Tissue with Pain, Radiographic Status, and Progression of Knee Osteoarthritis: Longitudinal Findings from the Osteoarthritis Initiative. Investigative Radiology, 50, 268-274.
https://doi.org/10.1097/rli.0000000000000113
[12] Akima, H., Hioki, M., Yoshiko, A., Koike, T., Sakakibara, H., Takahashi, H., et al. (2016) Intramuscular Adipose Tissue Determined by T1-Weighted MRI at 3 T Primarily Reflects Extramyocellular Lipids. Magnetic Resonance Imaging, 34, 397-403.
https://doi.org/10.1016/j.mri.2015.12.038
[13] Young, H., Jenkins, N.T., Zhao, Q. and Mccully, K.K. (2015) Measurement of Intramuscular Fat by Muscle Echo Intensity. Muscle & Nerve, 52, 963-971.
https://doi.org/10.1002/mus.24656
[14] Altman, R., Asch, E., Bloch, D., Bole, G., Borenstein, D., Brandt, K., et al. (1986) Development of Criteria for the Classification and Reporting of Osteoarthritis: Classification of Osteoarthritis of the Knee. Diagnostic and Therapeutic Criteria Committee of the American Rheumatism Association. Arthritis & Rheumatism, 29, 1039-1049.
https://doi.org/10.1002/art.1780290816
[15] Taniguchi, M., Fukumoto, Y., Yagi, M., Motomura, Y., Okada, S., Okada, S., et al. (2022) Enhanced Echo Intensity in Vastus Medialis Is Associated with Worsening of Functional Disabilities and Symptoms in Patients with Knee Osteoarthritis: A 3 Years Longitudinal Study. Rheumatology International, 43, 953-960.
https://doi.org/10.1007/s00296-022-05246-6
[16] Burton, A.M. and Stock, M.S. (2018) Consistency of Novel Ultrasound Equations for Estimating Percent Intramuscular Fat. Clinical Physiology and Functional Imaging, 38, 1062-1066.
https://doi.org/10.1111/cpf.12532
[17] Pinto, M.D., Silveira Pinto, R., Nosaka, K. and Blazevich, A.J. (2022) Do Intramuscular Temperature and Fascicle Angle Affect Ultrasound Echo Intensity Values? Medicine & Science in Sports & Exercise, 55, 740-750.
https://doi.org/10.1249/mss.0000000000003082
[18] Podsiadlo, D. and Richardson, S. (1991) The Timed “Up & Go”: A Test of Basic Functional Mobility for Frail Elderly Persons. Journal of the American Geriatrics Society, 39, 142-148.
https://doi.org/10.1111/j.1532-5415.1991.tb01616.x
[19] Khuna, L., Soison, T., Plukwongchuen, T. and Tangadulrat, N. (2024) Reliability and Concurrent Validity of 30-S and 5-Time Sit-To-Stand Tests in Older Adults with Knee Osteoarthritis. Clinical Rheumatology, 43, 2035-2045.
https://doi.org/10.1007/s10067-024-06969-6
[20] Tanaka, S., Tamari, K., Amano, T., Robbins, S.M., Inoue, Y. and Tanaka, R. (2020) Self-Reported Physical Activity Is Related to Knee Muscle Strength on the Unaffected Side and Walking Ability in Patients with Knee Osteoarthritis Awaiting Total Knee Arthroplasty: A Cross-Sectional Study. Physiotherapy Theory and Practice, 38, 441-447.
https://doi.org/10.1080/09593985.2020.1768457
[21] Li, J., Wu, Z., Lu, B., Li, C., Wang, S., Zhang, J., et al. (2024) The Differences in Parameters in Ultrasound Imaging and Biomechanical Properties of the Quadriceps Femoris with Unilateral Knee Osteoarthritis in the Elderly: A Preliminary Observational Study. Clinical Interventions in Aging, 19, 1479-1491.
https://doi.org/10.2147/cia.s442610
[22] Taniguchi, M., Fukumoto, Y., Kobayashi, M., Kawasaki, T., Maegawa, S., Ibuki, S., et al. (2015) Quantity and Quality of the Lower Extremity Muscles in Women with Knee Osteoarthritis. Ultrasound in Medicine & Biology, 41, 2567-2574.
https://doi.org/10.1016/j.ultrasmedbio.2015.05.014
[23] Palmieri-Smith, R.M. and Thomas, A.C. (2009) A Neuromuscular Mechanism of Posttraumatic Osteoarthritis Associated with ACL Injury. Exercise and Sport Sciences Reviews, 37, 147-153.
https://doi.org/10.1097/jes.0b013e3181aa6669
[24] Øiestad, B.E., Juhl, C.B., Eitzen, I. and Thorlund, J.B. (2015) Knee Extensor Muscle Weakness Is a Risk Factor for Development of Knee Osteoarthritis. a Systematic Review and Meta-analysis. Osteoarthritis and Cartilage, 23, 171-177.
https://doi.org/10.1016/j.joca.2014.10.008
[25] Øiestad, B.E., Juhl, C.B., Culvenor, A.G., Berg, B. and Thorlund, J.B. (2021) Knee Extensor Muscle Weakness Is a Risk Factor for the Development of Knee Osteoarthritis: An Updated Systematic Review and Meta-Analysis Including 46 819 Men and Women. British Journal of Sports Medicine, 56, 349-355.
https://doi.org/10.1136/bjsports-2021-104861
[26] Kemnitz, J., Wirth, W., Eckstein, F., Ruhdorfer, A. and Culvenor, A.G. (2017) Longitudinal Change in Thigh Muscle Strength Prior to and Concurrent with Symptomatic and Radiographic Knee Osteoarthritis Progression: Data from the Osteoarthritis Initiative. Osteoarthritis and Cartilage, 25, 1633-1640.
https://doi.org/10.1016/j.joca.2017.07.003
[27] Akima, H., Yoshiko, A., Ogawa, M., Maeda, H., Tomita, A., Ando, R., et al. (2020) Quadriceps Echo Intensity Can Be an Index of Muscle Size Regardless of Age in 65 or More Years Old. Experimental Gerontology, 138, Article ID: 111015.
https://doi.org/10.1016/j.exger.2020.111015
[28] Karapinar, M., Ayyildiz, V.A., Unal, A.M. and Firat, T. (2022) POS1477-HPR Is Eco-Intensity a Predictive Factor in Determining the Physical Performance of Women with Knee Osteoarthritis? Annals of the Rheumatic Diseases, 81, 1085.
https://doi.org/10.1136/annrheumdis-2022-eular.1742
[29] Karapınar, M., Ayyıldız, V.A., Unal, M., et al. (2022) Effect of Intramuscular Fat in the Thigh Muscles on Muscle Architecture and Physical Performance in the Middle-Aged Women with Knee Osteoarthritis. Journal of Orthopaedic Science: Official Journal of the Japanese Orthopaedic Association, 29, 194-199.
[30] Taniguchi, M., Fukumoto, Y., Yagi, M., Hirono, T., Yamagata, M., Asayama, A., et al. (2023) A Higher Intramuscular Fat in Vastus Medialis Is Associated with Functional Disabilities and Symptoms in Early Stage of Knee Osteoarthritis: A Case-Control Study. Arthritis Research & Therapy, 25, Article No. 61.
https://doi.org/10.1186/s13075-023-03048-0
[31] Rice, D.A. and McNair, P.J. (2010) Quadriceps Arthrogenic Muscle Inhibition: Neural Mechanisms and Treatment Perspectives. Seminars in Arthritis and Rheumatism, 40, 250-266.
https://doi.org/10.1016/j.semarthrit.2009.10.001
[32] Ferrell, W.R. (1987) The Effect of Acute joint Distension on Mechanoreceptor Discharge in the Knee of the Cat. Quarterly Journal of Experimental Physiology, 72, 493-499.
https://doi.org/10.1113/expphysiol.1987.sp003091
[33] Iles, J.F., Stokes, M. and Young, A. (1990) Reflex Actions of Knee Joint Afferents during Contraction of the Human Quadriceps. Clinical Physiology, 10, 489-500.
https://doi.org/10.1111/j.1475-097x.1990.tb00828.x
[34] Palmieri-Smith, R.M., Villwock, M., Downie, B., Hecht, G. and Zernicke, R. (2013) Pain and Effusion and Quadriceps Activation and Strength. Journal of Athletic Training, 48, 186-191.
https://doi.org/10.4085/1062-6050-48.2.10
[35] Lepley, A.S., Bahhur, N.O., Murray, A.M. and Pietrosimone, B.G. (2013) Quadriceps Corticomotor Excitability Following an Experimental Knee Joint Effusion. Knee Surgery, Sports Traumatology, Arthroscopy, 23, 1010-1017.
https://doi.org/10.1007/s00167-013-2816-1
[36] Hopkins, J.T., Ingersoll, C.D., Andrew Krause, B., Edwards, J.E. and Cordova, M.L. (2001) Effect of Knee Joint Effusion on Quadriceps and Soleus Motoneuron Pool Excitability. Medicine and Science in Sports and Exercise, 33, 123-126.
https://doi.org/10.1097/00005768-200101000-00019