脾酪氨酸激酶在类风湿关节炎中作用机制的研究进展
The Research Progress on the Mechanism of Action of Spleen Tyrosine Kinases in Rheumatoid Arthritis
摘要: 类风湿关节炎(rheumatoid arthritis, RA)是一种以关节滑膜炎症为显著特征的慢性自身免疫系统疾病。其发病复杂且尚未完全阐明。据研究报道,RA越影响全球1%的人群,且发病率呈逐渐上升趋势。但近年来的研究发现脾酪氨酸激酶(Spleen tyrosine kinase, SYK)在RA的发生和发展中起到了关键作用。SYK是一种细胞质非受体型蛋白酪氨酸激酶,广泛存在于多种免疫细胞中,尤其在B细胞、破骨细胞、中性粒细胞和巨噬细胞等免疫细胞中具有重要的生物学功能。因此,本文综述了脾酪氨酸激酶在RA中的研究进展,概述其与RA紧密相关的免疫细胞的相互作用,旨在为探究其在RA发病机制中的作用和研发抗RA靶向药物等提供思路和依据。
Abstract: Rheumatoid arthritis (RA) is a chronic autoimmune disease characterized by inflammation of the synovial membrane in the joints, with a complex and yet not fully understood pathogenesis. It is reported that approximately 1% of the global population is affected by RA, and its incidence has been gradually increasing in recent years. Recent studies have highlighted the crucial role of spleen tyrosine kinase (SYK) in the pathogenesis and progression of RA. SYK is a cytoplasmic, non-receptor protein tyrosine kinase, widely expressed in various immune cells, particularly in B cells, osteoclasts, neutrophils, and macrophages, where it plays key biological roles. Therefore, this review summarizes the research progress of SYK in RA, focusing on its interactions with immune cells closely associated with RA. The aim is to provide insights into the role of SYK in the pathogenesis of RA and to support the development of targeted therapies for RA.
文章引用:胡湘南, 童晓鹏. 脾酪氨酸激酶在类风湿关节炎中作用机制的研究进展[J]. 生物医学, 2025, 15(1): 146-151. https://doi.org/10.12677/hjbm.2025.151016

1. 引言

脾酪氨酸激酶(spleen tyrosine kinase, SYK)是一种非受体酪氨酸激酶,参与多种生物学功能,包括适应性和先天免疫受体信号传递、细胞黏附、病原体识别、组织损伤信号传递、炎症体激活、骨代谢和血管发育[1]。类风湿关节炎(rheumatoid arthritis, RA)是一种受遗传和环境因素共同影响的慢性进行性自身免疫性疾病,以关节滑膜炎症、血管翳生成、软骨组织受损和骨侵蚀为主要病理特征[2]。目前,RA发病机制尚未阐明,但B淋巴细胞、中性粒细胞、巨噬细胞和破骨细胞均参与其发生发展。研究发现,将在人类中发现的SYK基因功能获得性突变的一种注入小鼠体内,由于过多的破骨细胞的生成,导致严重关节炎的早期发展,表明脾酪氨酸激酶与RA的发病机制密切相关[3]。因此,本文从脾酪氨酸激酶与RA紧密相关的多种细胞之间进行综述,以期为探究其在RA发病机制中的作用和研发抗RA靶向药物等提供思路与依据。

2. 脾酪氨酸激酶的概述

脾酪氨酸激酶是一种72 kDa的非受体酪氨酸激酶,包含两个SRC同源2 (SH2)结构域和一个激酶域(BOX 1),并广泛表达于肥大细胞、嗜碱性粒细胞、B细胞和血小板等造血细胞中[4]。在静息状态下,SYK保持未被磷酸化的状态。受到刺激后,SYK的串联SH2结构域与磷酸化的免疫受体酪氨酸激活基序(immunoreceptor tyrosine-based activation motif, ITAM)结合,引起构象变化,导致其激酶结构域激活[5]。SYK被激活后,进一步磷酸化多个信号配体,激活下游一系列信号通路,例如控制细胞存活以及细胞因子释放的BTK-磷脂酶Cγ2 (phospholipase Cγ2, PLCγ2)-三磷酸肌醇(inositol triphosphate, IP3)-活化T细胞的Ca2+-核因子(Ca2+-nuclear factor of activated T cells, NFAT)信号通路或BTK-PLCγ2-蛋白激酶C (protein kinase C, PKC)-信号通路。这些信号通路在自身免疫性疾病方面有着重要作用[6]。而SYK作为几种关键免疫相关信号通路的主要激活因子,如与B细胞受体(B‐cell receptors, BCR)、FcR受体(Fc receptors, FCR)和C型凝集素受体(C‐type lectin receptors, CLR)三种受体相互作用[7]。其中FcRγ受体通过ITAM或半免疫受体酪氨酸激活基序(hemi-immunoreceptor tyrosine-based activation motif, hem-ITAM)激活了一条SYK介导的免疫球蛋白G-Fc受体γ (immunoglobulin G-FcRγ, IgG-FcRγ)信号通路,进而增强吞噬细胞对抗原的吞噬作用[8]。由于SYK在IgG-FcRγ信号通路中的关键作用,其被认为是治疗RA的有效靶点。

3. 脾酪氨酸激酶与参与RA发病免疫细胞的关系

3.1. 脾酪氨酸激酶与B细胞

RA是一种慢性进行性自身免疫疾病,涉及T和B淋巴细胞增殖失调,而B细胞通过BCR信号调节失调导致自身抗体和炎性细胞因子的产生,从而促进类风湿关节炎的进展。B细胞是由骨髓淋巴样干细胞分化而来,被激活后可分泌免疫球蛋白(immune globulin, Ig),诱导炎症反应[9]。BCR是一种位于B细胞表面的适应性免疫系统受体,BCR通过接头蛋白的SYK磷酸化与多条信号通路相连,SYK在B细胞对BCR刺激的反应中发挥关键作用[10]。BTK (Bruton’s tyroine kinase, BTK)是连接B细胞受体信号、趋化因子受体信号和Toll样受体(TLR)信号的关键分子,属于非受体酪氨酸激酶Tec家族,除T细胞和自然杀伤细胞外,在所有造血细胞中均有表达,参与调节B细胞[11]。在抗原依赖的BCR信号通路中,BTK可被SYK激活,参与调节B细胞的存活和增殖。研究发现RA患者外周血B细胞中磷酸化SYK水平显著升高。在这些患者中,也显示出抗瓜氨酸肽的强阳性自身抗体表明磷酸化的BTK水平与RF滴度相关[12]。BTK通过RANK吸收,调节破骨细胞的增殖和分化,这是影响RA患者外周血B细胞BTK磷酸化水平的主要因素。因此,BTK是治疗RA最有吸引力的靶点之一[13]

3.2. 脾酪氨酸激酶与中性粒细胞

而中性粒细胞则是RA滑膜炎症中含量最高的白细胞,通过中性粒细胞膜上的Fcγ受体与滑膜上的免疫复合物结合,产生活性氧(reactive oxygenspecies, ROS)和细胞因子导致血管内皮功能障碍和组织损伤[14]。Caspase募集结构域包含蛋白9 (Caspase recruitment domain-containing protein 9, CARD9)是一种主要在髓系细胞中表达的细胞内适配蛋白,它将C型凝集素受体与NFκB介导的基因表达偶联[15]。研究表明SYK参与了Fc受体和Src家族激酶下游的一条通路,并通过CARD9激活了进一步的下游过程。CARD9适配蛋白被认为是SYK的下游效应器[16]。K/BxN血清转移性关节炎是目前应用最广泛的自身抗体诱导的小鼠组织损伤模型之一。这一模型是由系统注射所谓的K/BxN小鼠的血清启动的,在该模型中,在易于自身免疫的遗传背景上表达特定的T细胞受体转基因导致产生针对普遍表达的葡萄糖6-磷酸异构酶的高滴度自身抗体。将这些自身抗体与K/BxN血清一起转移到动物身上,会引发远端关节和其他组织的强烈炎症。K/BxN血清转移性关节炎是由免疫复合物(IC)沉积和伴随的Fcγ受体激活而触发的[17]。中性粒细胞的作用是通过抗体介导的中性粒细胞缺失或基因缺失来防止该模型中关节炎的发生[18]。研究发现小鼠中性粒细胞中脾酪氨酸激酶的缺失,阻止了血清转移性关节炎的疾病发展。这一结果表明,在血清转移模型中,中性粒细胞的SYK依赖信号对于关节炎的发生是至关重要的[19]

3.3. 脾酪氨酸激酶与巨噬细胞

脾酪氨酸激酶广泛参与调节机体的免疫应答和炎症反应,并且表达于巨噬细胞中。而巨噬细胞是在髓系中发育的白细胞,从单核细胞分化而来在先天免疫反应过程中的炎症中起着关键作用[20]。它通过与各种刺激的结合而激活下游分子信号分子,这些信号随后激活转录因子,包括核因子-𝜅B (NF-𝜅B)、激活蛋白-1 (AP-1)和cAMP反应元件结合蛋白(CREB),从而诱导促炎基因(例如肿瘤坏死因子-𝛼、环氧合酶-2和诱导型一氧化氮合酶)的表达和炎症介质(例如一氧化氮(NO)、活性氧(ROS)和前列腺素E2(PGE_2)的分泌[21]。在巨噬细胞的炎症反应中,酪氨酸激酶家族被认为是主要的效应分子,SYK与TLR4结合主要通过酪氨酸残基的磷酸化而激活,通过激活下游的各种信号分子来传递刺激信号。由于SYK是上游信号分子之一,它协调许多下游信号分子并放大炎症信号。因此,SYK被认为在炎症反应中起关键作用[22]。激活的SYK通过抑制成纤维细胞样滑膜细胞中的𝛼信号来增加肿瘤坏死因子-JNK诱导的细胞因子的表达[23]。此外研究表明SYK在关节炎动物模型中起着关键作用[24]。口服药物R406和R406的前体药物R788在胶原诱导的关节炎动物模型中显示出抗关节炎作用,而针对SYK被激活的巨噬细胞的RA免疫疗法可以改善动物模型中的关节炎症状[25]。此外,这两种药物正处于治疗类风湿性关节炎的临床试验II期,对活动期类风湿关节炎患者显示出显著的疗效[26]

3.4. 脾酪氨酸激酶与破骨细胞

破骨细胞来源于髓系前体细胞骨吸收细胞。它们通过一个复杂的调控过程从髓系前体细胞分化而来,在这个过程中,破骨前细胞的分化之后是细胞间融合,产生大的多核细胞。在生理条件下,破骨细胞的形成主要通过巨噬细胞集落刺激因子(M-CSF, CSF-1)、核因子受体激活剂核因子-κB (RANK)和RANK配体(RANKL)以及黏附受体(如整合素)及其配体的相互作用来实现[27]破骨细胞携带至少两个含有ITAM序列的接头分子,即DAP12和FCR g链(FcRg),这些蛋白质可能与破骨细胞上的黏附受体OSCAR和TREM2一起工作[28]。小鼠DAP12和TREM2基因缺失导致破骨细胞分化和功能障碍[29]。另一方面,TREM2和DAP12基因缺陷的小鼠不具有成骨作用,这表明破骨细胞的形成可能通过一种需要另一个携带ITAM的分子FCR g链的机制进行,FcRg可能能够弥补DAP12的缺失,因为FcRg和DAP12的双突变小鼠具有严重的屈骨作用,这些携带ITAM的辅受体很可能与整合素黏附受体一起介导破骨细胞–成骨细胞和破骨细胞–骨基质的相互作用[28]。破骨细胞在生理性和病理性骨吸收中起核心作用,在类风湿性关节炎骨溶解过程中也是过度骨丢失所必需的[30]。SYK的大部分功能与受体相关的酪氨酸磷酸化免疫受体酪氨酸激活基序(ITAM)的结合有关,ITAM将免疫受体连接到下游信号通路。而研究发现含有ITAM的接头分子DAP12和FcRγ参与了体外破骨细胞的发育和功能,并且缺乏DAP12和FcRγ的小鼠表现出大量的矿化骨量增加,表明SYK在破骨细胞介导的体内骨吸收中起着不可或缺的作用,并提示SYK特异性的抑制剂可能在炎症和其他以破骨细胞介导的过度骨吸收为特征的疾病中提供治疗益处[31]

4. 脾酪氨酸激酶抑制剂与抗RA靶向治疗

大部分对SYK的研究都是用福斯塔替尼或其活性代谢物R406进行的。R406是一种有效的SYK激酶活性抑制剂,以ATP竞争的方式发挥作用[32]。用R406阻断SYK会导致与自身免疫性疾病和癌症有关的各种激酶的沉默,包括Akt/蛋白激酶B、多个丝裂原激活蛋白(MAP)激酶、磷脂酶Cγ (PLCγ)和布鲁顿酪氨酸激酶(BTK) [33]。R406还能减轻K/BxN血清诱导的小鼠关节炎[34]。但后来证明该抑制剂是非选择性的,因此尚不清楚其活性是否完全归因于对SYK活性的抑制[35]。虽然福司他替尼在临床上对抑制自身免疫指征是有益的,不过它的毒性作用似乎限制了它的用途[36]。研究发现一种新型的选择性SYK抑制剂SKI-O-703在抑制KSTA滑膜炎方面,以次优剂量联合肿瘤坏死因子阻滞剂使用比单独使用SKI-O-703更有效,这表明SKI-O-703与肿瘤坏死因子拮抗剂联合使用治疗RA具有一定潜力[37]。而SYK抑制剂的疗效不仅限于RA。近期,一款新型的SYK抑制剂——索乐匹尼布公布了III期ESLIM-01 (NCT05029635)的研究结果,显示其在治疗免疫性血小板减少症(ITP)方面的疗效和安全性[38]。这表明SYK是一个具有广泛治疗潜力的靶点。

5. 小结与展望

脾酪氨酸激酶(SYK)在类风湿关节炎的免疫病理过程中发挥着至关重要的作用。SYK不仅在B细胞、破骨细胞、巨噬细胞等免疫细胞的激活和信号传导中起着关键作用,还参与了滑膜成纤维细胞的增殖与炎症反应。因此,针对SYK的治疗策略,尤其是SYK抑制剂的开发,为RA的治疗提供了新的思路和方向。尽管当前SYK抑制剂在临床试验中显示出一定的疗效,但仍有许多问题需要解决。首先,SYK抑制剂的长期安全性尚未完全明确,尤其是在长期使用后的免疫抑制作用。其次,如何提高SYK抑制剂的靶向性和选择性,减少对正常免疫功能的负面影响,也是未来研究的重要方向。最后,随着对SYK作用机制的深入理解,未来可能会出现更加个性化、精准的治疗方案,进一步提高RA患者的生活质量。总之,SYK作为RA治疗的新靶点,前景广阔,但仍需通过更多的基础研究和临床试验来优化其应用和治疗效果,为RA患者带来更好的治疗选择。

NOTES

*通讯作者。

参考文献

[1] Mócsai, A., Ruland, J. and Tybulewicz, V.L.J. (2010) The SYK Tyrosine Kinase: A Crucial Player in Diverse Biological Functions. Nature Reviews Immunology, 10, 387-402.
https://doi.org/10.1038/nri2765
[2] 吴晶艺, 陆欣辰, 陈广洁. Notch信号通路在类风湿关节炎发病机制中的研究进展[J]. 现代免疫学, 2023, 43(2): 144-149.
[3] Wang, L., Aschenbrenner, D., Zeng, Z., Cao, X., Mayr, D., Mehta, M., et al. (2021) Gain-of-Function Variants in SYK Cause Immune Dysregulation and Systemic Inflammation in Humans and Mice. Nature Genetics, 53, 500-510.
https://doi.org/10.1038/s41588-021-00803-4
[4] Bartaula-Brevik, S., Lindstad Brattås, M.K., Tvedt, T.H.A., Reikvam, H. and Bruserud, Ø. (2018) Splenic Tyrosine Kinase (SYK) Inhibitors and Their Possible Use in Acute Myeloid Leukemia. Expert Opinion on Investigational Drugs, 27, 377-387.
https://doi.org/10.1080/13543784.2018.1459562
[5] Hobbs, H.T., Shah, N.H., Badroos, J.M., Gee, C.L., Marqusee, S. and Kuriyan, J. (2021) Differences in the Dynamics of the Tandem‐SH2 Modules of the SYK and ZAP‐70 Tyrosine Kinases. Protein Science, 30, 2373-2384.
https://doi.org/10.1002/pro.4199
[6] 范露, 崔兵兵, 陆涛, 等. 小分子脾酪氨酸激酶抑制剂临床研究进展[J]. 药学进展, 2021, 45(1): 44-54.
[7] Singh, R., Masuda, E.S. and Payan, D.G. (2012) Discovery and Development of Spleen Tyrosine Kinase (SYK) Inhibitors. Journal of Medicinal Chemistry, 55, 3614-3643.
https://doi.org/10.1021/jm201271b
[8] Zarrin, A.A., Bao, K., Lupardus, P. and Vucic, D. (2020) Kinase Inhibition in Autoimmunity and Inflammation. Nature Reviews Drug Discovery, 20, 39-63.
https://doi.org/10.1038/s41573-020-0082-8
[9] Arneson, L.C., Carroll, K.J. and Ruderman, E.M. (2021) Bruton’s Tyrosine Kinase Inhibition for the Treatment of Rheumatoid Arthritis. ImmunoTargets and Therapy, 10, 333-342.
https://doi.org/10.2147/itt.s288550
[10] Zhang, Y., Yu, Z., Xiong, W., Liu, X., Liu, H., Cui, R., et al. (2020) TOSO Interacts with SYK and Enhances BCR Pathway Activation in Chronic Lymphocytic Leukemia. Chinese Medical Journal, 133, 2090-2097.
https://doi.org/10.1097/cm9.0000000000000999
[11] Corneth, O.B.J., Klein Wolterink, R.G.J. and Hendriks, R.W. (2015) BTK Signaling in B Cell Differentiation and Autoimmunity. In: Current Topics in Microbiology and Immunology, Springer International Publishing, 67-105.
https://doi.org/10.1007/82_2015_478
[12] Iwata, S., Nakayamada, S., Fukuyo, S., Kubo, S., Yunoue, N., Wang, S., et al. (2014) Activation of Syk in Peripheral Blood B Cells in Patients with Rheumatoid Arthritis: A Potential Target for Abatacept Therapy. Arthritis & Rheumatology, 67, 63-73.
https://doi.org/10.1002/art.38895
[13] Ding, Q., Hu, W., Wang, R., Yang, Q., Zhu, M., Li, M., et al. (2023) Signaling Pathways in Rheumatoid Arthritis: Implications for Targeted Therapy. Signal Transduction and Targeted Therapy, 8, Article No. 68.
https://doi.org/10.1038/s41392-023-01331-9
[14] Cecchi, I., Arias de la Rosa, I., Menegatti, E., Roccatello, D., Collantes-Estevez, E., Lopez-Pedrera, C., et al. (2018) Neutrophils: Novel Key Players in Rheumatoid Arthritis. Current and Future Therapeutic Targets. Autoimmunity Reviews, 17, 1138-1149.
https://doi.org/10.1016/j.autrev.2018.06.006
[15] Roth, S. and Ruland, J. (2013) Caspase Recruitment Domain-Containing Protein 9 Signaling in Innate Immunity and Inflammation. Trends in Immunology, 34, 243-250.
https://doi.org/10.1016/j.it.2013.02.006
[16] Németh, T., Futosi, K., Sitaru, C., Ruland, J. and Mócsai, A. (2016) Neutrophil-Specific Deletion of the CARD9 Gene Expression Regulator Suppresses Autoantibody-Induced Inflammation in Vivo. Nature Communications, 7, Article No. 11004.
https://doi.org/10.1038/ncomms11004
[17] Ji, H., Ohmura, K., Mahmood, U., Lee, D.M., Hofhuis, F.M.A., Boackle, S.A., et al. (2002) Arthritis Critically Dependent on Innate Immune System Players. Immunity, 16, 157-168.
https://doi.org/10.1016/s1074-7613(02)00275-3
[18] Wipke, B.T. and Allen, P.M. (2001) Essential Role of Neutrophils in the Initiation and Progression of a Murine Model of Rheumatoid Arthritis. The Journal of Immunology, 167, 1601-1608.
https://doi.org/10.4049/jimmunol.167.3.1601
[19] Németh, T., Futosi, K., Szilveszter, K., Vilinovszki, O., Kiss-Pápai, L. and Mócsai, A. (2018) Lineage-Specific Analysis of Syk Function in Autoantibody-Induced Arthritis. Frontiers in Immunology, 9, Article No. 555.
https://doi.org/10.3389/fimmu.2018.00555
[20] Jeon, J., Park, B., Jung, J., Jang, Y., Shin, E. and Park, Y.W. (2013) The Soluble Form of the Cellular Prion Protein Enhances Phagocytic Activity and Cytokine Production by Human Monocytes via Activation of ERK and NF-κB. Immune Network, 13, 148-156.
https://doi.org/10.4110/in.2013.13.4.148
[21] Lee, J., Kim, N.H., Kim, J., Park, J., Shin, S., Kwon, Y., et al. (2013) Aromadendrin Inhibits Lipopolysaccharide-Induced Nuclear Translocation of NF-κB and Phosphorylation of JNK in RAW264.7 Macrophage Cells. Biomolecules and Therapeutics, 21, 216-221.
https://doi.org/10.4062/biomolther.2013.023
[22] Yi, Y.S., Son, Y.J., Ryou, C., Sung, G.H., Kim, J.H. and Cho, J.Y. (2014) Functional Roles of Syk in Macrophage-Mediated Inflammatory Responses. Mediators of Inflammation, 2014, Article ID: 270302.
[23] Chui, C., Wong, R., Cheng, G., Lau, F., Kok, S., Cheng, C., et al. (2006) Antiproliferative Ability of a Combination Regimen of Crocodile Egg Extract, Wild Radix Ginseng and Natural Ganoderma Lucidum on Acute Myelogenous Leukemia. Oncology Reports, 16, 1313-1316.
https://doi.org/10.3892/or.16.6.1313
[24] Ozaki, N., Suzuki, S., Ishida, M., Harada, Y., Tanaka, K., Sato, Y., et al. (2012) Syk-Dependent Signaling Pathways in Neutrophils and Macrophages Are Indispensable in the Pathogenesis of Anti-Collagen Antibody-Induced Arthritis. International Immunology, 24, 539-550.
https://doi.org/10.1093/intimm/dxs078
[25] Pine, P.R., Chang, B., Schoettler, N., Banquerigo, M.L., Wang, S., Lau, A., et al. (2007) Inflammation and Bone Erosion Are Suppressed in Models of Rheumatoid Arthritis Following Treatment with a Novel Syk Inhibitor. Clinical Immunology, 124, 244-257.
https://doi.org/10.1016/j.clim.2007.03.543
[26] Weinblatt, M.E., Kavanaugh, A., Burgos‐Vargas, R., Dikranian, A.H., Medrano‐Ramirez, G., Morales‐Torres, J.L., et al. (2008) Treatment of Rheumatoid Arthritis with a Syk Kinase Inhibitor: A Twelve‐Week, Randomized, Placebo‐Controlled Trial. Arthritis & Rheumatism, 58, 3309-3318.
https://doi.org/10.1002/art.23992
[27] Boyle, W.J., Simonet, W.S. and Lacey, D.L. (2003) Osteoclast Differentiation and Activation. Nature, 423, 337-342.
https://doi.org/10.1038/nature01658
[28] Humphrey, M.B., Ogasawara, K., Yao, W., Spusta, S.C., Daws, M.R., Lane, N.E., et al. (2004) The Signaling Adapter Protein DAP12 Regulates Multinucleation during Osteoclast Development. Journal of Bone and Mineral Research, 19, 224-234.
https://doi.org/10.1359/jbmr.0301234
[29] Paloneva, J., Mandelin, J., Kiialainen, A., Böhling, T., Prudlo, J., Hakola, P., et al. (2003) DAP12/TREM2 Deficiency Results in Impaired Osteoclast Differentiation and Osteoporotic Features. The Journal of Experimental Medicine, 198, 669-675.
https://doi.org/10.1084/jem.20030027
[30] Győri, D.S. and Mócsai, A. (2020) Osteoclast Signal Transduction during Bone Metastasis Formation. Frontiers in Cell and Developmental Biology, 8, Article No. 507.
https://doi.org/10.3389/fcell.2020.00507
[31] Csete, D., Simon, E., Alatshan, A., Aradi, P., Dobó-Nagy, C., Jakus, Z., et al. (2019) Hematopoietic or Osteoclast-Specific Deletion of Syk Leads to Increased Bone Mass in Experimental Mice. Frontiers in Immunology, 10, Article No. 937.
https://doi.org/10.3389/fimmu.2019.00937
[32] Newland, A. and McDonald, V. (2020) Fostamatinib: A Review of Its Clinical Efficacy and Safety in the Management of Chronic Adult Immune Thrombocytopenia. Immunotherapy, 12, 1325-1340.
https://doi.org/10.2217/imt-2020-0215
[33] Braselmann, S., Taylor, V., Zhao, H., Wang, S., Sylvain, C., Baluom, M., et al. (2006) R406, an Orally Available Spleen Tyrosine Kinase Inhibitor Blocks Fc Receptor Signaling and Reduces Immune Complex-Mediated Inflammation. The Journal of Pharmacology and Experimental Therapeutics, 319, 998-1008.
https://doi.org/10.1124/jpet.106.109058
[34] Pine, P.R., Chang, B., Schoettler, N., Banquerigo, M.L., Wang, S., Lau, A., et al. (2007) Inflammation and Bone Erosion Are Suppressed in Models of Rheumatoid Arthritis Following Treatment with a Novel Syk Inhibitor. Clinical Immunology, 124, 244-257.
https://doi.org/10.1016/j.clim.2007.03.543
[35] Currie, K.S., Kropf, J.E., Lee, T., Blomgren, P., Xu, J., Zhao, Z., et al. (2014) Discovery of GS-9973, a Selective and Orally Efficacious Inhibitor of Spleen Tyrosine Kinase. Journal of Medicinal Chemistry, 57, 3856-3873.
https://doi.org/10.1021/jm500228a
[36] Taylor, P.C., Genovese, M.C., Greenwood, M., Ho, M., Nasonov, E., Oemar, B., et al. (2015) OSKIRA-4: A Phase IIb Randomised, Placebo-Controlled Study of the Efficacy and Safety of Fostamatinib Monotherapy. Annals of the Rheumatic Diseases, 74, 2123-2129.
https://doi.org/10.1136/annrheumdis-2014-205361
[37] Cho, S., Jang, E., Yoon, T., Hwang, H. and Youn, J. (2022) A Novel Selective Spleen Tyrosine Kinase Inhibitor SKI-O-703 (Cevidoplenib) Ameliorates Lupus Nephritis and Serum-Induced Arthritis in Murine Models. Clinical and Experimental Immunology, 211, 31-45.
https://doi.org/10.1093/cei/uxac096
[38] Yang, R., et al. (2024) Efficacy and Safety of the Syk Inhibitor Sovleplenib (HMPL-523) in Adult Patients with Chronic Primary Immune Thrombocytopenia in China (ESLIM-01): A Randomized, Double-Blind, Placebo-Controlled Phase 3 Study. The European Hematology Association (EHA).
https://doi.org/10.1016/S2352-3026(24)00139-X