[1]
|
Meng, L., Jan, S.Z., Hamer, G., van Pelt, A.M., van der Stelt, I., Keijer, J., et al. (2018) Preantral Follicular Atresia Occurs Mainly through Autophagy, While Antral Follicles Degenerate Mostly through Apoptosis. Biology of Reproduction, 99, 853-863. https://doi.org/10.1093/biolre/ioy116
|
[2]
|
Yaba, A. and Demir, N. (2012) The Mechanism of mTOR (Mammalian Target of Rapamycin) in a Mouse Model of Polycystic Ovary Syndrome (PCOS). Journal of Ovarian Research, 5, Article No. 38. https://doi.org/10.1186/1757-2215-5-38
|
[3]
|
Yamamoto, S., Kuramoto, K., Wang, N., Situ, X., Priyadarshini, M., Zhang, W., et al. (2018) Autophagy Differentially Regulates Insulin Production and Insulin Sensitivity. Cell Reports, 23, 3286-3299. https://doi.org/10.1016/j.celrep.2018.05.032
|
[4]
|
Kang, Y., Cho, M., Kim, J., Kwon, M., Peak, J., Kang, S., et al. (2016) Impaired Macrophage Autophagy Induces Systemic Insulin Resistance in Obesity. Oncotarget, 7, 35577-35591. https://doi.org/10.18632/oncotarget.9590
|
[5]
|
Yang, L., Li, P., Fu, S., Calay, E.S. and Hotamisligil, G.S. (2010) Defective Hepatic Autophagy in Obesity Promotes ER Stress and Causes Insulin Resistance. Cell Metabolism, 11, 467-478. https://doi.org/10.1016/j.cmet.2010.04.005
|
[6]
|
Ediriweera, M.K., Tennekoon, K.H. and Samarakoon, S.R. (2019) Role of the PI3K/AKT/mTOR Signaling Pathway in Ovarian Cancer: Biological and Therapeutic Significance. Seminars in Cancer Biology, 59, 147-160. https://doi.org/10.1016/j.semcancer.2019.05.012
|
[7]
|
Glaviano, A., Foo, A.S.C., Lam, H.Y., Yap, K.C.H., Jacot, W., Jones, R.H., et al. (2023) PI3K/AKT/mTOR Signaling Transduction Pathway and Targeted Therapies in Cancer. Molecular Cancer, 22, Article No. 138. https://doi.org/10.1186/s12943-023-01827-6
|
[8]
|
Hemmings, B.A. and Restuccia, D.F. (2012) PI3K-PKB/Akt Pathway. Cold Spring Harbor Perspectives in Biology, 4, a011189. https://doi.org/10.1101/cshperspect.a011189
|
[9]
|
Saxton, R.A. and Sabatini, D.M. (2017) mTOR Signaling in Growth, Metabolism, and Disease. Cell, 169, 361-371. https://doi.org/10.1016/j.cell.2017.03.035
|
[10]
|
Kearney, A.L., Norris, D.M., Ghomlaghi, M., Kin Lok Wong, M., Humphrey, S.J., Carroll, L., et al. (2021) Akt Phosphorylates Insulin Receptor Substrate to Limit PI3K-Mediated PIP3 Synthesis. eLife, 10, e66942. https://doi.org/10.7554/elife.66942
|
[11]
|
Li, Y., Jiang, J., Yang, J., Xiao, L., Hua, Q. and Zou, Y. (2021) PI3K/AKT/mTOR Signaling Participates in Insulin‐mediated Regulation of Pathological Myopia‐Related Factors in Retinal Pigment Epithelial Cells. BMC Ophthalmology, 21, 218. https://doi.org/10.1186/s12886-021-01946-y
|
[12]
|
Walker, C.L., Wu, X., Liu, N. and Xu, X. (2019) Bisperoxovanadium Mediates Neuronal Protection through Inhibition of PTEN and Activation of PI3K/AKT/mTOR Signaling after Traumatic Spinal Injuries. Journal of Neurotrauma, 36, 2676-2687. https://doi.org/10.1089/neu.2018.6294
|
[13]
|
Yu, X., Long, Y.C. and Shen, H. (2015) Differential Regulatory Functions of Three Classes of Phosphatidylinositol and Phosphoinositide 3-Kinases in Autophagy. Autophagy, 11, 1711-1728. https://doi.org/10.1080/15548627.2015.1043076
|
[14]
|
Doherty, J. and Baehrecke, E.H. (2018) Life, Death and Autophagy. Nature Cell Biology, 20, 1110-1117. https://doi.org/10.1038/s41556-018-0201-5
|
[15]
|
Mizushima, N. and Komatsu, M. (2011) Autophagy: Renovation of Cells and Tissues. Cell, 147, 728-741. https://doi.org/10.1016/j.cell.2011.10.026
|
[16]
|
佟庆, 金哲, 沈喜萍. 多囊卵巢综合征大鼠颗粒细胞自噬率的相关研究[J]. 疑难病杂志, 2011, 10(5): 364-365+403.
|
[17]
|
Kumariya, S., Ubba, V., Jha, R.K. and Gayen, J.R. (2021) Autophagy in Ovary and Polycystic Ovary Syndrome: Role, Dispute and Future Perspective. Autophagy, 17, 2706-2733. https://doi.org/10.1080/15548627.2021.1938914
|
[18]
|
Choi, J., Jo, M., Lee, E. and Choi, D. (2014) AKT Is Involved in Granulosa Cell Autophagy Regulation via mTOR Signaling during Rat Follicular Development and Atresia. Reproduction, 147, 73-80. https://doi.org/10.1530/rep-13-0386
|
[19]
|
Shen, M., Jiang, Y., Guan, Z., Cao, Y., Li, L., Liu, H., et al. (2017) Protective Mechanism of FSH against Oxidative Damage in Mouse Ovarian Granulosa Cells by Repressing Autophagy. Autophagy, 13, 1364-1385. https://doi.org/10.1080/15548627.2017.1327941
|
[20]
|
Sun, Y., Wang, Y., Sun, X., Cheng, S., Li, L., Zhao, Y., et al. (2018) The Role of Autophagy during Murine Primordial Follicle Assembly. Aging, 10, 197-211. https://doi.org/10.18632/aging.101376
|
[21]
|
D’Arcy, M.S. (2019) Cell Death: A Review of the Major Forms of Apoptosis, Necrosis and Autophagy. Cell Biology International, 43, 582-592. https://doi.org/10.1002/cbin.11137
|
[22]
|
Peng, S., Wu, Q., Xie, Q., Tan, J. and Shu, K. (2021) PATL2 Regulated the Apoptosis of Ovarian Granulosa Cells in Patients with PCOS. Gynecological Endocrinology, 37, 629-634. https://doi.org/10.1080/09513590.2021.1928066
|
[23]
|
Saltiel, A.R. (2021) Insulin Signaling in Health and Disease. Journal of Clinical Investigation, 131, e142241. https://doi.org/10.1172/jci142241
|
[24]
|
Gong, Y., Luo, S., Fan, P., Zhu, H., Li, Y. and Huang, W. (2020) Growth Hormone Activates PI3K/AKT Signaling and Inhibits ROS Accumulation and Apoptosis in Granulosa Cells of Patients with Polycystic Ovary Syndrome. Reproductive Biology and Endocrinology, 18, Article No. 121. https://doi.org/10.1186/s12958-020-00677-x
|
[25]
|
Zhao, H., Zhang, J., Cheng, X., Nie, X. and He, B. (2023) Insulin Resistance in Polycystic Ovary Syndrome across Various Tissues: An Updated Review of Pathogenesis, Evaluation, and Treatment. Journal of Ovarian Research, 16, Article No. 9. https://doi.org/10.1186/s13048-022-01091-0
|
[26]
|
Cassar, S., Misso, M.L., Hopkins, W.G., Shaw, C.S., Teede, H.J. and Stepto, N.K. (2016) Insulin Resistance in Polycystic Ovary Syndrome: A Systematic Review and Meta-Analysis of Euglycaemic-Hyperinsulinaemic Clamp Studies. Human Reproduction, 31, 2619-2631. https://doi.org/10.1093/humrep/dew243
|
[27]
|
Abuelezz, N.Z., Shabana, M.E., Abdel-Mageed, H.M., Rashed, L. and Morcos, G.N.B. (2020) Nanocurcumin Alleviates Insulin Resistance and Pancreatic Deficits in Polycystic Ovary Syndrome Rats: Insights on PI3K/AKT/mTOR and TNF-Α Modulations. Life Sciences, 256, Article ID: 118003. https://doi.org/10.1016/j.lfs.2020.118003
|
[28]
|
张红阳, 侯丽辉, 李妍. 多囊卵巢综合征中医证型与临床特征的相关性分析[J]. 辽宁中医杂志, 2019, 46(11): 2357-2360.
|
[29]
|
林安盈, 杨璐瑜, 孔倩等. 健脾化痰方通过PI3K/AKT/mTOR和PI3K/AKT/GLUT4通路干预PCOS-IR大鼠的作用机制研究[J]. 时珍国医国药, 2023, 34(10): 2362-2365.
|
[30]
|
陈苗, 马会明, 冯亚宏, 等. 健脾益肾化浊方对多囊卵巢综合征模型大鼠卵巢颗粒细胞凋亡蛋白及PI3K/AKT/mTOR通路的影响[J]. 中医杂志, 2023, 64(15): 1585-1592.
|
[31]
|
王毅, 王海娇, 祁麟等. 桃核承气汤对多囊卵巢综合征大鼠卵巢组织PI3K/AKT/mTOR信号通路的影响[J]. 天津医药, 2023, 51(6): 596-601.
|
[32]
|
刘敏, 朱鸿秋, 李印, 等. 桂枝茯苓丸调节PI3K/Akt/mTOR通路对PCOS-IR大鼠排卵障碍的影响[J]. 中国实验方剂学杂志, 2021, 27(6): 7-14.
|
[33]
|
李建南, 于凤英, 沈欢欢, 等. 桂枝茯苓丸联合西医药物治疗多囊卵巢综合征的疗效及对PI3K/AKT/mTOR通路的调节作用[J]. 分子诊断与治疗杂志, 2023, 15(2): 197-200+204.
|
[34]
|
刘亚敏, 董文霞, 薛鹏坤等. 金匮肾气丸通过调控PI3K-AKT-mTOR及PI3K-AKT-GLUT4通路干预多囊卵巢综合征大鼠的作用机制研究[J]. 中药药理与临床, 2023, 39(1): 1-7.
|
[35]
|
Jiang, X., Yuan, Y., Shi, M., Zhang, S., Sui, M. and Zhou, H. (2022) Bu-Shen-Zhu-Yun Decoction Inhibits Granulosa Cell Apoptosis in Rat Polycystic Ovary Syndrome through Estrogen Receptor Α-Mediated PI3K/AKT/mTOR Pathway. Journal of Ethnopharmacology, 288, Article ID: 114862. https://doi.org/10.1016/j.jep.2021.114862
|
[36]
|
陶冲. 基于组蛋白去乙酰化酶调节AKT/mTOR通路探讨补肾活血方改善多囊卵巢综合征胰岛素抵抗的研究[D]: [硕士学位论文]. 福州: 福建中医药大学, 2023.
|
[37]
|
张明昊, 高一盈, 董文霞, 等. 补肾强身片对多囊卵巢综合征模型大鼠的干预作用及机制研究[J]. 中国药房, 2022, 33(21): 2632-2637+2653.
|
[38]
|
张帅男, 李煦照. 杜仲化学成分及药理作用研究进展[J]. 中国民族民间医药, 2017, 26(10): 56-61.
|
[39]
|
毕晓英, 许珂, 赵艳晓, 等. 基于PI3K/AKT/mTOR通路研究杜仲总黄酮对多囊卵巢综合征大鼠性激素水平及卵巢组织自噬的影响[J]. 中药药理与临床, 2022, 38(1): 82-86.
|
[40]
|
党莉. 纳米姜黄素通过调节PCOS大鼠PI3K/AkT/mTOR信号通路调节胰岛素抵抗及自噬相关因子的研究[J]. 西藏医药, 2023, 44(2): 36-38.
|
[41]
|
马智, 胡俊, 邓煜, 等. 白藜芦醇调节Akt/mTOR通路对大鼠多囊卵巢综合征颗粒细胞自噬的影响机制研究[J]. 重庆医科大学学报, 2021, 46(4): 388-393.
|