[1]
|
Dalbeth, N., Merriman, T.R. and Stamp, L.K. (2016) Gout. The Lancet, 388, 2039-2052. https://doi.org/10.1016/s0140-6736(16)00346-9
|
[2]
|
Petreski, T., Ekart, R., Hojs, R. and Bevc, S. (2020) Hyperuricemia, the Heart, and the Kidneys—To Treat or Not to Treat? Renal Failure, 42, 978-986. https://doi.org/10.1080/0886022x.2020.1822185
|
[3]
|
Koo, B.S., Jeong, H., Son, C., Kim, S., Kim, H.J., Kim, G., et al. (2021) Distribution of Serum Uric Acid Levels and Prevalence of Hyper-and Hypouricemia in a Korean General Population of 172,970. The Korean Journal of Internal Medicine, 36, S264-S272. https://doi.org/10.3904/kjim.2020.116
|
[4]
|
Butler, F., Alghubayshi, A. and Roman, Y. (2021) The Epidemiology and Genetics of Hyperuricemia and Gout across Major Racial Groups: A Literature Review and Population Genetics Secondary Database Analysis. Journal of Personalized Medicine, 11, Article No. 231. https://doi.org/10.3390/jpm11030231
|
[5]
|
Zhu, C., Xu, Y., Liu, Z., Wan, X., Li, D. and Tai, L. (2018) The Anti-Hyperuricemic Effect of Epigallocatechin-3-Gallate (EGCG) on Hyperuricemic Mice. Biomedicine & Pharmacotherapy, 97, 168-173. https://doi.org/10.1016/j.biopha.2017.10.013
|
[6]
|
Takahama, U., Koga, Y., Hirota, S. and Yamauchi, R. (2011) Inhibition of Xanthine Oxidase Activity by an Oxathiolanone Derivative of Quercetin. Food Chemistry, 126, 1808-1811. https://doi.org/10.1016/j.foodchem.2010.12.009
|
[7]
|
Dabeek, W.M. and Marra, M.V. (2019) Dietary Quercetin and Kaempferol: Bioavailability and Potential Cardiovascular-Related Bioactivity in Humans. Nutrients, 11, Article No. 2288. https://doi.org/10.3390/nu11102288
|
[8]
|
Shi, Y. and Williamson, G. (2016) Quercetin Lowers Plasma Uric Acid in Pre-Hyperuricaemic Males: A Randomised, Double-Blinded, Placebo-Controlled, Cross-Over Trial. British Journal of Nutrition, 115, 800-806. https://doi.org/10.1017/s0007114515005310
|
[9]
|
Zhang, C., Wang, R., Zhang, G. and Gong, D. (2018) Mechanistic Insights into the Inhibition of Quercetin on Xanthine Oxidase. International Journal of Biological Macromolecules, 112, 405-412. https://doi.org/10.1016/j.ijbiomac.2018.01.190
|
[10]
|
Yu, Y., Xiong, Y., Tong, S., Li, Y., Cai, R., Zhang, X., et al. (2025) Inhibitory Activity of Quercetin, Rutin, and Hyperoside against Xanthine Oxidase: Kinetics, Fluorescence, and Molecular Docking. Current Pharmaceutical Biotechnology, 26, 513-524. https://doi.org/10.2174/0113892010297269240427055003
|
[11]
|
姚芳芳, 张锐, 傅瑞娟, 等. 槲皮素对高尿酸血症大鼠黄嘌呤氧化酶和腺苷脱氨酶活性的影响[J]. 郑州大学学报(医学版), 2011, 46(2): 248-251.
|
[12]
|
Graf, B.A., Ameho, C., Dolnikowski, G.G., Milbury, P.E., Chen, C. and Blumberg, J.B. (2006) Rat Gastrointestinal Tissues Metabolize Quercetin. The Journal of Nutrition, 136, 39-44. https://doi.org/10.1093/jn/136.1.39
|
[13]
|
Bieger, J., Cermak, R., Blank, R., de Boer, V.C.J., Hollman, P.C.H., Kamphues, J., et al. (2008) Tissue Distribution of Quercetin in Pigs after Long-Term Dietary Supplementation. The Journal of Nutrition, 138, 1417-1420. https://doi.org/10.1093/jn/138.8.1417
|
[14]
|
Hu, Q., Wang, C., Li, J., Zhang, D. and Kong, L. (2009) Allopurinol, Rutin, and Quercetin Attenuate Hyperuricemia and Renal Dysfunction in Rats Induced by Fructose Intake: Renal Organic Ion Transporter Involvement. American Journal of Physiology-Renal Physiology, 297, F1080-F1091. https://doi.org/10.1152/ajprenal.90767.2008
|
[15]
|
Hu, Q., Zhang, X., Pan, Y., Li, Y. and Kong, L. (2012) Allopurinol, Quercetin and Rutin Ameliorate Renal NLRP3 Inflammasome Activation and Lipid Accumulation in Fructose-Fed Rats. Biochemical Pharmacology, 84, 113-125. https://doi.org/10.1016/j.bcp.2012.03.005
|
[16]
|
Yao, F., Zhang, R., Fu, R., et al. (2011) Preventive and Therapeutic Effects of Quercetin on Hyperuricemia and Renal Injury in Rats. Journal of Hygiene Research, 40, 175-177.
|
[17]
|
赵悦. 槲皮素对尿酸损伤肾小管上皮细胞保护的研究[D]: [硕士学位论文]. 哈尔滨: 哈尔滨医科大学, 2014.
|
[18]
|
彭艳, 邱慧磊, 史为伍, 等. 槲皮素对非沉积高尿酸血症肾损伤的保护作用[J]. 中医药学报, 2013, 41(3): 63-66.
|
[19]
|
Matsuo, H., Takada, T., Ichida, K., Nakamura, T., Nakayama, A., Ikebuchi, Y., et al. (2009) Common Defects of ABCG2, a High-Capacity Urate Exporter, Cause Gout: A Function-Based Genetic Analysis in a Japanese Population. Science Translational Medicine, 1, 5ra11. https://doi.org/10.1126/scitranslmed.3000237
|
[20]
|
Ichida, K., Matsuo, H., Takada, T., Nakayama, A., Murakami, K., Shimizu, T., et al. (2012) Decreased Extra-Renal Urate Excretion Is a Common Cause of Hyperuricemia. Nature Communications, 3, Article No. 764. https://doi.org/10.1038/ncomms1756
|
[21]
|
Yano, H., Tamura, Y., Kobayashi, K., Tanemoto, M. and Uchida, S. (2013) Uric Acid Transporter ABCG2 Is Increased in the Intestine of the 5/6 Nephrectomy Rat Model of Chronic Kidney Disease. Clinical and Experimental Nephrology, 18, 50-55. https://doi.org/10.1007/s10157-013-0806-8
|
[22]
|
Zhang, M., Lin, L. and Liu, H. (2018) Acute Effect of Soy and Soy Products on Serum Uric Acid Concentration among Healthy Chinese Men. Asia Pacific Journal of Clinical Nutrition, 27, 1239-1242.
|
[23]
|
DeBosch, B.J., Kluth, O., Fujiwara, H., Schürmann, A. and Moley, K. (2014) Early-Onset Metabolic Syndrome in Mice Lacking the Intestinal Uric Acid Transporter Slc2a9. Nature Communications, 5, Article No. 4642. https://doi.org/10.1038/ncomms5642
|
[24]
|
陈海青, 周璇, 王秀秀. 槲皮素治疗高尿酸血症的机制研究[J]. 光明中医, 2019, 34(9): 1340-1344.
|
[25]
|
Sorensen, L.B. (1965) Role of the Intestinal Tract in the Elimination of Uric Acid. Arthritis & Rheumatism, 8, 694-706. https://doi.org/10.1002/art.1780080429
|
[26]
|
Liu, Y., Jarman, J.B., Low, Y.S., Augustijn, H.E., Huang, S., Chen, H., et al. (2023) A Widely Distributed Gene Cluster Compensates for Uricase Loss in Hominids. Cell, 186, 3400-3413.e20. https://doi.org/10.1016/j.cell.2023.06.010
|
[27]
|
Roxon, J.J., Ryan, A.J. and Wright, S.E. (1966) Reduction of Tartrazine by a Proteus Species Isolated from Rats. Food and Cosmetics Toxicology, 4, 419-426. https://doi.org/10.1016/s0015-6264(66)80583-7
|
[28]
|
Yamada, N., Iwamoto, C., Kano, H., Yamaoka, N., Fukuuchi, T., Kaneko, K., et al. (2016) Evaluation of Purine Utilization by Lactobacillus gasseri Strains with Potential to Decrease the Absorption of Food-Derived Purines in the Human Intestine. Nucleosides, Nucleotides & Nucleic Acids, 35, 670-676. https://doi.org/10.1080/15257770.2015.1125000
|
[29]
|
Nei, S., Matsusaki, T., Kawakubo, H., Ogawa, K., Nishiyama, K., Tsend-Ayush, C., et al. (2024) Lactiplantibacillus plantarum 06CC2 Enhanced the Expression of Intestinal Uric Acid Excretion Transporter in Mice. Nutrients, 16, Article No. 3042. https://doi.org/10.3390/nu16173042
|
[30]
|
Just, S., Mondot, S., Ecker, J., Wegner, K., Rath, E., Gau, L., et al. (2018) The Gut Microbiota Drives the Impact of Bile Acids and Fat Source in Diet on Mouse Metabolism. Microbiome, 6, Article No. 134. https://doi.org/10.1186/s40168-018-0510-8
|
[31]
|
任科雨, 勇春明, 金延春, 等. 青岛地区高尿酸血症患者的肠道菌群分析[J]. 中国医师杂志, 2014, 16(12): 1649-1651, 1656.
|
[32]
|
曹统. 益生菌对高尿酸血症小鼠血清尿酸水平的影响及机制[D]: [博士学位论文]. 青岛: 青岛大学, 2017.
|
[33]
|
Li, D., Zhang, M., Teng Zhu La, A.L., Lyu, Z., Li, X., Feng, Y., et al. (2023) Quercetin-Enriched Lactobacillus aviarius Alleviates Hyperuricemia by Hydrolase-Mediated Degradation of Purine Nucleosides. Pharmacological Research, 196, Article ID: 106928. https://doi.org/10.1016/j.phrs.2023.106928
|
[34]
|
Silva, J.C.P., Mota, M., Martins, F.O., Nogueira, C., Gonçalves, T., Carneiro, T., et al. (2018) Intestinal Microbial and Metabolic Profiling of Mice Fed with High-Glucose and High-Fructose Diets. Journal of Proteome Research, 17, 2880-2891. https://doi.org/10.1021/acs.jproteome.8b00354
|
[35]
|
张晨宇. 槲皮素对高尿酸血症小鼠炎症因子及肠道菌群的影响[D]: [硕士学位论文]. 开封: 河南大学, 2021.
|