罗沙司他在肾性贫血治疗中的作用机制及研究进展
Mechanism of Action and Research Progress of Roxadustat in the Treatment of Renal Anemia
DOI: 10.12677/acm.2025.151196, PDF, HTML, XML,   
作者: 伍金清:吉首大学医学院,湖南 吉首;吉首大学第四临床学院,湖南 怀化;梅国斌*:吉首大学医学院,湖南 吉首;吉首大学第四临床学院,湖南 怀化;湖南医药学院总医院肾脏内科,湖南 怀化
关键词: 肾性贫血低氧诱导因子–脯氨酸羟化酶抑制剂罗沙司他Renal Anemia Hypoxia-Inducible Factor-Prolinyl Hydroxylase Inhibitor Rosastat
摘要: 肾性贫血其发生有着复杂的机制,主要与促红细胞生成素(erythropoiesis, EPO)减少有关。严重贫血可影响患者生活质量并与死亡预后相关。低氧诱导因子-1 (hypoxia inducible factor 1, HIF-1),可与特定的低氧应答DNA元件结合,调节低氧诱导基因的转录,诱导内源性EPO的产生。近年来,多种低氧诱导因子–脯氨酸羟化酶抑制剂(hypoxia-inducible factor-prolyl hydroxylase inhibitors, HIF-PHIs)被成功开发,其中罗沙司他(Roxadustat, FG-4592)已在中国、日本获准上市,并完成了相关临床试验,已证实罗沙司他可有效提升肾性贫血患者血红蛋白、改善铁代谢及脂代谢。本文就罗沙司他在肾性贫血治疗中的作用机制及研究进展作一综述。
Abstract: The occurrence of renal anemia has a complex mechanism, which is mainly related to the reduction of erythropoiesis (EPO). Severe anemia can affect the quality of life of patients and is associated with the prognosis of death. Hypoxia inducible factor-1 (HIF-1) can bind to specific hypoxia-responsive DNA elements, regulate the transcription of hypoxia-inducible genes, and induce the production of endogenous EPO. In recent years, a variety of hypoxia-inducible factor-prolyl hydroxylase inhibitors (HIF-PHIs) have been successfully developed, among which Roxadustat (FG-4592) has been approved for marketing in China and Japan, and relevant clinical trials have been completed. It has been confirmed that Roxadustat can effectively increase hemoglobin, iron metabolism and lipid metabolism in patients with renal anemia. This article reviews the mechanism of action and research progress of Roxadustat in the treatment of renal anemia.
文章引用:伍金清, 梅国斌. 罗沙司他在肾性贫血治疗中的作用机制及研究进展[J]. 临床医学进展, 2025, 15(1): 1464-1470. https://doi.org/10.12677/acm.2025.151196

1. 引言

慢性肾脏病(Chronic Kidney Disease, CKD)的常见并发症之一是贫血,与EPO生成不足、EPO活性降低、铁缺乏及代谢障碍、营养不良、甲状旁腺功能亢进、炎症状态、尿毒症毒素等因素相关[1]。贫血是CKD的一种常见并发症,CKD患者的贫血患病率是一般人群的两倍,且随着CKD的进展而增加[2]。CKD4期或CKD5期患者中,贫血患病率超过50%,而在在维持性透析的CKD患者中,贫血的患病率可达90%以上[3]。患有贫血的CKD患者的生活质量通常低于没有贫血的患者[4]。既往,临床上治疗肾性贫血的方案以促红细胞生成刺激剂(erythropoiesis-stimulating agents, ESAs)或合并使用铁剂为主[5]。但是长期摄入高剂量ESAs可能引起许多不良反应,如心脑血管并发症,且微炎症状态可影响ESAs疗效[6] [7]。罗沙司他可抑制脯氨酸羟化酶(prolyl hydroxylase, PHD)活性,模拟低氧环境,可有效提升肾性贫血患者的血红蛋白、并改善铁代谢及脂代谢,并且在微炎症状态下可有效应答[8]

2. 罗沙司他作用机制

2.1. 缺氧诱导因子1 (HIF-1)

缺氧诱导因子1是一种DNA结合蛋白,由对O2敏感的HIF-1α和稳定的HIF-1β构成,可在缺氧条件下激活促红细胞生成素基因转录EPO [9] [10]。HIF-α有分为1α、2α、3α三种亚型,其中HIF-1α是参与基因转录的主要亚基[11]。在氧气充足条件下,HIF-1α会被泛素–蛋白酶体迅速降解[12]。脯氨酰羟化酶是其中的关键酶,具有三种亚型(PHD1, PHD2, PHD3),泛素–蛋白酶体迅速降解依赖于脯氨酰羟化酶PHD2的作用[13]。在缺氧条件下,PHD活性受到抑制,阻止HIF-1α的泛素化降解,从而提高HIF-1α蛋白水平,进入细胞核核内与HIF-β结合,两者形成复合物并与特定的低氧应答DNA元件结合,调节低氧诱导基因的转录,促使EPO表达[14]

2.2. 低氧诱导因子–脯氨酸羟化酶抑制剂——罗沙司他

罗沙司他是首款小分子低氧诱导因子脯氨酰羟化酶抑制剂(HIF-PHI)被用于治疗肾性贫血的药物,其分子量为352.34 g/mol,化学式为C19H16N2O5 [15]。罗沙司他在2018年首先被国家药监局批准用于治疗正在接受透析的慢性肾病患者的贫血,是全球第一款HIF-PHI类药物[16]。罗沙司他在促使内源性EPO表达增加的同时,也能使EPO受体以及促进铁吸收和循环的蛋白表达增加,并且药物以剂量依赖的方式稳定HIF水平并刺激红细胞生成[17]

3. 罗沙司他在肾性贫血患者临床治疗中的研究进展

3.1. 罗沙司他在肾性贫血患者中的治疗疗效

2019年,Nan Chen等[8]首先在中国开展的一项多中心、随机对照三期临床实验证实了罗沙司他,可有效提升未接受透析的肾性贫血患者的血红蛋白。该研究在中国29个研究中心开展,研究者以2:1的比例将154例CKD患者随机分组,分别以双盲方式接受每周3次、为期8周的罗沙司他或安慰剂治疗。研究表明在第7~9周时的血红蛋白水平,罗沙司他组显著超过安慰剂组达到预期终点。该研究也评估罗沙司他在铁代谢及脂质代谢方面的影响,研究结果显示接受罗沙司他治疗后的CKD患者,其铁调素水平显著降低,转铁蛋白水平和总铁结合力则有所上升,同时总胆固醇水平相较于基线下降了40.6 mg/dL。同时,Nan Chen等[18]也研究了罗沙司他对长期透析患者的疗效。在这项实验中共纳入305例患者,以2:1的比例随机分组,评估在第23~27周的血红蛋白水平相对于基线的平均变化方面。研究发现罗沙司他治疗组的血红蛋白水平的改善情况在数值上超过ESAs治疗组,且增加了转铁蛋白,保持了血清铁的水平,总胆固醇及低密度脂蛋白胆固醇水平下降。一项随机、开放标签的3期研究比较了罗沙司他与ESA在616名非透析依赖性患者中的贫血治疗疗效和安全性。该研究表明罗沙司他可维持血红蛋白血浆水平长达104周,使用罗沙司他组的血红蛋白反应性不低于ESAs组且在第1~36周期间首次使用静脉铁剂的发生率较低[19]。Fishbane S等[20]同样研究了罗沙司他治疗在非透析依赖性患者中的贫血疗效,发现罗沙司他可有效增加非透析依赖性CKD患者的血红蛋白并减少红细胞输血的需求。Fishbane S等[21]也开展了另一项3期临床试验,评估了罗沙司他在2133维持性透析患者中的疗效,其中血液透析患者占比89.1%;腹膜透析患者占比10.8%。研究发现罗沙司他的肾性贫血疗效不劣于ESAs,且罗沙司他组的平均每月静脉铁使用量显著低于ESAs组。刚开始透析的患者是高风险人群,在透析的第一年发病率和死亡率最高[22]。HIMALAYAS [23]是一项大型RCT研究,其评估了在美国、欧洲、南美洲和亚洲的19个国家中罗沙司他对治疗新透析(终末期肾脏病接受血液透析或腹膜透析2周至8周)的1043名CKD患者肾性贫血的疗效,证实罗沙司他在改善肾性贫血方面同样不劣于ESAs。在一项涵盖了21项随机对照试验的荟萃分析中,研究者共纳入了中国地区的1408例患者。分析结果表明,与中国地区血液透析患者常用的传统红细胞生成刺激剂相比,罗沙司他在治疗贫血方面展现出了更高的有效性和安全性[24]。PYRENEES [25]研究中共纳入了836名欧洲地区维持性透析CKD患者,按1:1随机分配,受试者以每周3次的ESAs持续治疗4月后转换为罗沙司他,或继续之前的ESAs方案。研究表明在维持性透析且至少接受4个月ESA治疗的CKD贫血患者中,罗沙司他在维持血红蛋白水平方面不劣于ESA。在中国进行的罗沙司他Ⅲ期临床试验中,针对微炎症状态亚组分析结果显示,与接受促红细胞生成素刺激剂治疗的组别相比,接受罗沙司他治疗的组别血红蛋白水平升高幅度更为显著,且无需增加罗沙司他的药物剂量[8] [18]。年龄较大、罗沙司他血药谷浓度较高或基线血红蛋白水平较低的患者对罗沙司他治疗反应较好[26]。EPO相比,罗沙司他可改善血液透析患者的左心室质量指数[27]。在尿毒症合并肿瘤的贫血患者中,一项小样本回顾性研究显示罗沙司他联合重组人促红素可有效提高血红蛋白、血清铁蛋白以及血清转铁蛋白的浓度[28]

3.2. 罗沙司他与其他药物之间的相互作用

CKD患者常伴随电解质及内分泌代谢紊乱、胃肠道和营养异常,需要服用其他药物来治疗这种疾病的许多并发症[29]。在抗凝、血小板及质子泵抑制剂等相关药物方面,奥美拉唑、氯吡格雷、口服铁剂、碳吸附剂和华法林对罗沙司他药代动力学没有显著影响[30]-[33]。在磷结合剂方面,碳酸镧在对罗沙司他的药代动力学没有临床相关影响[34]。而司维拉姆或醋酸钙与罗沙司他同时服用可形成不溶性的螯合物从而降低罗沙司他的吸收和利用程度,但服用磷酸盐结合剂与口服罗沙司他间隔超过1小时,这种效果会减弱[35]。在降脂药物方面,罗沙司他与他汀类药物同用会增加他汀类药物血药浓度[36]

4. 罗沙司他的安全性

Jonathan Barratt [37]汇总分析了四项3期研究的罗沙司他在CKD患者中的疗效和心血管安全性,研究显示罗沙司他与ESAs相比,CKD患者心血管事件或死亡率风险并无显著差异。在临床试验中,罗沙司他不良反应报道主要是腹泻、恶心、头晕、鼻咽炎、高钾血症等[18] [19] [21] [38]。有病案报道表明罗沙司他可能会引起甲状腺功能减退[39]-[42]。随后有回顾性研究及队列研究显示罗沙司他会引起甲状腺功能减退,其机制可能是罗沙司他与甲状腺激素受体相互作用,抑制垂体中促甲状腺激素分泌的负反馈,导致甲状腺激素分泌减少[43]-[45]

5. 总结

罗沙司他可有效改善CKD患者的贫血,并可调节铁调素水平,增加铁的利用,降低总胆固醇水平。在安全性方面,与ESAs相比罗沙司他是一种相对安全有效的治疗CKD患者贫血的药物。

6. 展望

尽管罗沙司他作为治疗肾性贫血的首个口服小分子HIF-PHI,在中国和日本的III期临床试验中显示出显著疗效,例如在治疗第27周时,罗沙司他组平均Hb升高值高于ESAs组,且有效率接近93%,但治疗期间仍需警惕严重不良反应。因此,进一步的研究是必要的,以优化其治疗方案并确保患者安全。罗沙司他在治疗肾性贫血方面显示出潜力,但目前尚缺乏前瞻性研究证实其对甲状腺功能的长期影响,如罗沙司他导致甲状腺功能减退的案例所示,因此需要进一步开展相关临床试验。另外,罗沙司他在骨髓增生异常综合征等血液疾病中的潜在治疗效果也值得进一步探究。罗沙司他的出现为肾性贫血的治疗开辟了新途径,其独特的作用机制和良好的疗效使其具有广阔的应用前景。未来,随着研究的深入和临床经验的积累,罗沙司他可能成为肾性贫血治疗的一线选择,进一步改善患者的生活质量和临床预后。

NOTES

*通讯作者。

参考文献

[1] Weiss, G. and Goodnough, L.T. (2005) Anemia of Chronic Disease. New England Journal of Medicine, 352, 1011-1023.
https://doi.org/10.1056/nejmra041809
[2] Stauffer, M.E. and Fan, T. (2014) Prevalence of Anemia in Chronic Kidney Disease in the United States. PLOS ONE, 9, e84943.
https://doi.org/10.1371/journal.pone.0084943
[3] Kovesdy, C.P., Davis, J.R., Duling, I. and Little, D.J. (2022) Prevalence of Anaemia in Adults with Chronic Kidney Disease in a Representative Sample of the United States Population: Analysis of the 1999-2018 National Health and Nutrition Examination Survey. Clinical Kidney Journal, 16, 303-311.
https://doi.org/10.1093/ckj/sfac240
[4] Eriksson, D., Goldsmith, D., Teitsson, S., Jackson, J. and van Nooten, F. (2016) Cross-Sectional Survey in CKD Patients across Europe Describing the Association between Quality of Life and Anaemia. BMC Nephrology, 17, Article No. 97.
https://doi.org/10.1186/s12882-016-0312-9
[5] Macdougall, I.C. (2023) Anaemia in CKD—Treatment Standard. Nephrology Dialysis Transplantation, 39, 770-777.
https://doi.org/10.1093/ndt/gfad250
[6] Dulmovits, B.M., Tang, Y., Papoin, J., He, M., Li, J., Yang, H., et al. (2022) Hmgb1-Mediated Restriction of EPO Signaling Contributes to Anemia of Inflammation. Blood, 139, 3181-3193.
https://doi.org/10.1182/blood.2021012048
[7] Cernaro, V., Lacquaniti, A., Buemi, A., Lupica, R. and Buemi, M. (2014) Does Erythropoietin Always Win? Current Medicinal Chemistry, 21, 849-854.
https://doi.org/10.2174/09298673113206660270
[8] Chen, N., Hao, C., Peng, X., Lin, H., Yin, A., Hao, L., et al. (2019) Roxadustat for Anemia in Patients with Kidney Disease Not Receiving Dialysis. New England Journal of Medicine, 381, 1001-1010.
https://doi.org/10.1056/nejmoa1813599
[9] Wang, G.L. and Semenza, G.L. (1995) Purification and Characterization of Hypoxia-Inducible Factor 1. Journal of Biological Chemistry, 270, 1230-1237.
https://doi.org/10.1074/jbc.270.3.1230
[10] Mokas, S., Larivière, R., Lamalice, L., Gobeil, S., Cornfield, D.N., Agharazii, M., et al. (2016) Hypoxia-Inducible Factor-1 Plays a Role in Phosphate-Induced Vascular Smooth Muscle Cell Calcification. Kidney International, 90, 598-609.
https://doi.org/10.1016/j.kint.2016.05.020
[11] Jaśkiewicz, M., Moszyńska, A., Króliczewski, J., Cabaj, A., Bartoszewska, S., Charzyńska, A., et al. (2022) The Transition from HIF-1 to HIF-2 during Prolonged Hypoxia Results from Reactivation of PHDs and HIF1A mRNA Instability. Cellular & Molecular Biology Letters, 27, Article No. 109.
https://doi.org/10.1186/s11658-022-00408-7
[12] Salceda, S. and Caro, J. (1997) Hypoxia-Inducible Factor 1α (hif-1α) Protein Is Rapidly Degraded by the Ubiquitin-Proteasome System under Normoxic Conditions: Its Stabilization by Hypoxia Depends on Re-Dox-Induced Changes. Journal of Biological Chemistry, 272, 22642-22647.
https://doi.org/10.1074/jbc.272.36.22642
[13] Appelhoff, R.J., Tian, Y., Raval, R.R., Turley, H., Harris, A.L., Pugh, C.W., et al. (2004) Differential Function of the Prolyl Hydroxylases PHD1, PHD2, and PHD3 in the Regulation of Hypoxia-Inducible Factor. Journal of Biological Chemistry, 279, 38458-38465.
https://doi.org/10.1074/jbc.m406026200
[14] Semenza, G.L. (2001) HIF-1 and Mechanisms of Hypoxia Sensing. Current Opinion in Cell Biology, 13, 167-171.
https://doi.org/10.1016/s0955-0674(00)00194-0
[15] Czock, D. and Keller, F. (2021) Clinical Pharmacokinetics and Pharmacodynamics of Roxadustat. Clinical Pharmacokinetics, 61, 347-362.
https://doi.org/10.1007/s40262-021-01095-x
[16] Dhillon, S. (2019) Roxadustat: First Global Approval. Drugs, 79, 563-572.
https://doi.org/10.1007/s40265-019-01077-1
[17] Akizawa, T., Otsuka, T., Reusch, M. and Ueno, M. (2019) Intermittent Oral Dosing of Roxadustat in Peritoneal Dialysis Chronic Kidney Disease Patients with Anemia: A Randomized, Phase 3, Multicenter, Open‐label Study. Therapeutic Apheresis and Dialysis, 24, 115-125.
https://doi.org/10.1111/1744-9987.12888
[18] Chen, N., Hao, C., Liu, B., Lin, H., Wang, C., Xing, C., et al. (2019) Roxadustat Treatment for Anemia in Patients Undergoing Long-Term Dialysis. New England Journal of Medicine, 381, 1011-1022.
https://doi.org/10.1056/nejmoa1901713
[19] Barratt, J., Andric, B., Tataradze, A., Schömig, M., Reusch, M., Valluri, U., et al. (2021) Roxadustat for the Treatment of Anaemia in Chronic Kidney Disease Patients Not on Dialysis: A Phase 3, Randomized, Open-Label, Active-Controlled Study (DOLOMITES). Nephrology Dialysis Transplantation, 36, 1616-1628.
https://doi.org/10.1093/ndt/gfab191
[20] Fishbane, S., El-Shahawy, M.A., Pecoits-Filho, R., Van, B.P., Houser, M.T., Frison, L., et al. (2021) Roxadustat for Treating Anemia in Patients with CKD Not on Dialysis: Results from a Randomized Phase 3 Study. Journal of the American Society of Nephrology, 32, 737-755.
https://doi.org/10.1681/asn.2020081150
[21] Fishbane, S., Pollock, C.A., El-Shahawy, M., Escudero, E.T., Rastogi, A., Van, B.P., et al. (2022) Roxadustat versus Epoetin Alfa for Treating Anemia in Patients with Chronic Kidney Disease on Dialysis: Results from the Randomized Phase 3 ROCKIES Study. Journal of the American Society of Nephrology, 33, 850-866.
https://doi.org/10.1681/asn.2020111638
[22] Fort, J., Cuevas, X., Garcia, F., Perez-Garcia, R., Llados, F., Lozano, J., et al. (2010) Mortality in Incident Haemodialysis Patients: Time-Dependent Haemoglobin Levels and Erythropoiesis-Stimulating Agent Dose Are Independent Predictive Factors in the ANSWER Study. Nephrology Dialysis Transplantation, 25, 2702-2710.
https://doi.org/10.1093/ndt/gfq073
[23] Provenzano, R., Shutov, E., Eremeeva, L., Korneyeva, S., Poole, L., Saha, G., et al. (2021) Roxadustat for Anemia in Patients with End-Stage Renal Disease Incident to Dialysis. Nephrology Dialysis Transplantation, 36, 1717-1730.
https://doi.org/10.1093/ndt/gfab051
[24] Liang, Q., Li, X., Niu, Q., Zhao, H. and Zuo, L. (2023) Efficacy and Safety of Roxadustat in Chinese Hemodialysis Patients: A Systematic Review and Meta-Analysis. Journal of Clinical Medicine, 12, Article No. 2450.
https://doi.org/10.3390/jcm12072450
[25] Csiky, B., Schömig, M., Esposito, C., Barratt, J., Reusch, M., Valluri, U., et al. (2021) Roxadustat for the Maintenance Treatment of Anemia in Patients with End-Stage Kidney Disease on Stable Dialysis: A European Phase 3, Randomized, Open-Label, Active-Controlled Study (PYRENEES). Advances in Therapy, 38, 5361-5380.
https://doi.org/10.1007/s12325-021-01904-6
[26] Wu, W., Hu, N., Li, X., Di, J., Zhou, H., Niu, H., et al. (2024) Influencing Factors of Clinical Efficacy of Roxadustat among Hemodialysis Patients. Renal Failure, 46, Article ID: 2308701.
https://doi.org/10.1080/0886022x.2024.2308701
[27] Tan, W., Wang, X., Sun, Y., Wang, X., He, J., Zhong, L., et al. (2024) Roxadustat Reduces Left Ventricular Mass Index Compared to rHuEPO in Haemodialysis Patients in a Randomized Controlled Trial. Journal of Internal Medicine, 295, 620-633.
https://doi.org/10.1111/joim.13770
[28] 乔敏, 赵传庆, 焉春英, 等. 罗沙司他联合重组人促红素在尿毒症合并肿瘤患者贫血治疗中的疗效[J]. 国际移植与血液净化杂志, 2024, 22(1): 13-14.
[29] 上海市肾内科临床质量控制中心专家组. 慢性肾脏病早期筛查、诊断及防治指南(2022年版) [J]. 中华肾脏病杂志, 2022, 38(5): 453-464.
[30] Groenendaal-van de Meent, D., den Adel, M., van Dijk, J., Barroso-Fernandez, B., El Galta, R., Golor, G., et al. (2018) Effect of Multiple Doses of Omeprazole on the Pharmacokinetics, Safety, and Tolerability of Roxadustat in Healthy Subjects. European Journal of Drug Metabolism and Pharmacokinetics, 43, 685-692.
https://doi.org/10.1007/s13318-018-0480-z
[31] Shibata, T., Nomura, Y., Takada, A., Ueno, M., Katashima, M., Yazawa, R., et al. (2018) Evaluation of Food and Spherical Carbon Adsorbent Effects on the Pharmacokinetics of Roxadustat in Healthy Nonelderly Adult Male Japanese Subjects. Clinical Pharmacology in Drug Development, 8, 304-313.
https://doi.org/10.1002/cpdd.597
[32] Provenzano, R., Tumlin, J., Zabaneh, R., Chou, J., Hemmerich, S., Neff, T.B., et al. (2020) Oral Hypoxia‐Inducible Factor Prolyl Hydroxylase Inhibitor Roxadustat (FG‐4592) for Treatment of Anemia in Chronic Kidney Disease: A Placebo‐Controlled Study of Pharmacokinetic and Pharmacodynamic Profiles in Hemodialysis Patients. The Journal of Clinical Pharmacology, 60, 1432-1440.
https://doi.org/10.1002/jcph.1648
[33] Rekić, D., Kerbusch-Herben, V., Någård, M., Chou, J., Huang, J., Bradley, C., et al. (2021) Pharmacokinetics of Roxadustat: A Population Analysis of 2855 Dialysis-and Non-Dialysis-Dependent Patients with Chronic Kidney Disease. Clinical Pharmacokinetics, 60, 759-773.
https://doi.org/10.1007/s40262-020-00974-z
[34] Shibata, T., Nomura, Y., Takada, A., Aoki, S., Katashima, M. and Murakami, H. (2018) Evaluation of the Effect of Lanthanum Carbonate Hydrate on the Pharmacokinetics of Roxadustat in Non‐Elderly Healthy Adult Male Subjects. Journal of Clinical Pharmacy and Therapeutics, 43, 633-639.
https://doi.org/10.1111/jcpt.12729
[35] Groenendaal-van de Meent, D., Kerbusch, V., Barroso-Fernandez, B., den Adel, M., van Dijk, J., Golor, G., et al. (2021) Effect of the Phosphate Binders Sevelamer Carbonate and Calcium Acetate on the Pharmacokinetics of Roxadustat after Concomitant or Time-Separated Administration in Healthy Individuals. Clinical Therapeutics, 43, 1079-1091.
https://doi.org/10.1016/j.clinthera.2021.03.025
[36] Groenendaal‐van de Meent, D., den Adel, M., Kerbusch, V., van Dijk, J., Shibata, T., Kato, K., et al. (2022) Effect of Roxadustat on the Pharmacokinetics of Simvastatin, Rosuvastatin, and Atorvastatin in Healthy Subjects: Results from 3 Phase 1, Open‐Label, 1‐Sequence, Crossover Studies. Clinical Pharmacology in Drug Development, 11, 486-501.
https://doi.org/10.1002/cpdd.1076
[37] Barratt, J., Dellanna, F., Portoles, J., Choukroun, G., De Nicola, L., Young, J., et al. (2023) Safety of Roxadustat versus Erythropoiesis-Stimulating Agents in Patients with Anemia of Non-Dialysis-Dependent or Incident-to-Dialysis Chronic Kidney Disease: Pooled Analysis of Four Phase 3 Studies. Advances in Therapy, 40, 1546-1559.
https://doi.org/10.1007/s12325-023-02433-0
[38] Akizawa, T., Yamaguchi, Y., Otsuka, T., et al. (2020) A Phase 3, Multicenter, Randomized, Two-Arm, Open-Label Study of Intermittent Oral Dosing of Roxadustat for the Treatment of Anemia in Japanese Erythropoiesis-Stimulating Agent-Naïve Chronic Kidney Disease Patients Not on Dialysis. Nephron, 144, 372-382.
https://doi.org/10.1159/000508100
[39] Shi, X.T., Li, M., Cui, W.X., et al. (2022) Hypothyrotropin Hypothyroidism Caused by Roxadustat: A Case Report. Chinese Journal of Internal Medicine, 61, 1357-1359.
[40] Yao, B., Wei, Y., Zhang, S., Tian, S., Xu, S., Wang, R., et al. (2019) Revealing a Mutant-Induced Receptor Allosteric Mechanism for the Thyroid Hormone Resistance. iScience, 20, 489-496.
https://doi.org/10.1016/j.isci.2019.10.002
[41] Tokuyama, A., Kadoya, H., Obata, A., Obata, T., Sasaki, T. and Kashihara, N. (2021) Roxadustat and Thyroid-Stimulating Hormone Suppression. Clinical Kidney Journal, 14, 1472-1474.
https://doi.org/10.1093/ckj/sfab007
[42] Omote, D., Kuramoto, N., Tomikawa, A., Yasui, M., Fukuta, M. and Hiraguri, M. (2024) Roxadustat-Induced Central Hypothyroidism in Renal Anemia Patients: Insights from Antineutrophil Cytoplasmic Antibody-Related Vasculitis Cases. Cureus, 16, e61843.
https://doi.org/10.7759/cureus.61843
[43] Zheng, X., Jin, Y., Xu, T., Xu, H. and Zhu, S. (2023) Thyroid Function Analysis after Roxadustat or Erythropoietin Treatment in Patients with Renal Anemia: A Cohort Study. Renal Failure, 45, Article ID: 2199093.
https://doi.org/10.1080/0886022x.2023.2199093
[44] Cheng, Y., Xiang, Q., Cao, T., Tang, F., Chen, J., Qi, D., et al. (2023) Suppression of Thyroid Profile during Roxadustat Treatment in Chronic Kidney Disease Patients. Nephrology Dialysis Transplantation, 38, 1567-1570.
https://doi.org/10.1093/ndt/gfad017
[45] Li, N., Cui, W., Mu, D., Shi, X., Gao, L., Liu, S., et al. (2024) Effects of Roxadustat on Thyroid Hormone Levels and Blood Lipid Metabolism in Patients Undergoing Hemodialysis: A Retrospective Study. International Journal of Medical Sciences, 21, 1806-1813.
https://doi.org/10.7150/ijms.97599.