[1]
|
Liu, Z., Nalluri, S.K.M. and Stoddart, J.F. (2017) Surveying Macrocyclic Chemistry: From Flexible Crown Ethers to Rigid Cyclophanes. Chemical Society Reviews, 46, 2459-2478. https://doi.org/10.1039/c7cs00185a
|
[2]
|
Yang, L., Wang, X., Yao, H. and Jiang, W. (2019) Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature. Accounts of Chemical Research, 53, 198-208. https://doi.org/10.1021/acs.accounts.9b00415
|
[3]
|
Chen, F., Geng, W., Cai, K. and Guo, D. (2024) Molecular Recognition of Cyclophanes in Water. Chinese Chemical Letters, 35, Article ID: 109161. https://doi.org/10.1016/j.cclet.2023.109161
|
[4]
|
Xue, M., Yang, Y., Chi, X., Yan, X. and Huang, F. (2015) Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chemical Reviews, 115, 7398-7501. https://doi.org/10.1021/cr5005869
|
[5]
|
Assaf, K.I. and Nau, W.M. (2015) Cucurbiturils: From Synthesis to High-Affinity Binding and Catalysis. Chemical Society Reviews, 44, 394-418. https://doi.org/10.1039/c4cs00273c
|
[6]
|
Wang, C., Xu, L., Jia, Z. and Loh, T. (2024) Recent Applications of Macrocycles in Supramolecular Catalysis. Chinese Chemical Letters, 35, Article ID: 109075. https://doi.org/10.1016/j.cclet.2023.109075
|
[7]
|
Ma, X. and Zhao, Y. (2014) Biomedical Applications of Supramolecular Systems Based on Host-Guest Interactions. Chemical Reviews, 115, 7794-7839. https://doi.org/10.1021/cr500392w
|
[8]
|
Geng, W., Sessler, J.L. and Guo, D. (2020) Supramolecular Prodrugs Based on Host-Guest Interactions. Chemical Society Reviews, 49, 2303-2315. https://doi.org/10.1039/c9cs00622b
|
[9]
|
Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. and Nakamoto, Y. (2008) para-Bridged Symmetrical Pillar[5]arenes: Their Lewis Acid Catalyzed Synthesis and Host-Guest Property. Journal of the American Chemical Society, 130, 5022-5023. https://doi.org/10.1021/ja711260m
|
[10]
|
Strutt, N.L., Zhang, H., Schneebeli, S.T. and Stoddart, J.F. (2014) Functionalizing Pillar[n]arenes. Accounts of Chemical Research, 47, 2631-2642. https://doi.org/10.1021/ar500177d
|
[11]
|
Si, W., Xin, P., Li, Z. and Hou, J. (2015) Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities. Accounts of Chemical Research, 48, 1612-1619. https://doi.org/10.1021/acs.accounts.5b00143
|
[12]
|
Ogoshi, T., Yamagishi, T. and Nakamoto, Y. (2016) Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. Chemical Reviews, 116, 7937-8002. https://doi.org/10.1021/acs.chemrev.5b00765
|
[13]
|
Li, Z. and Yang, Y. (2021) Functional Materials with Pillarene Struts. Accounts of Materials Research, 2, 292-305. https://doi.org/10.1021/accountsmr.1c00042
|
[14]
|
Wada, K. and Ogoshi, T. (2024) Functionalization of Pillar[n]arenes towards Optically Responsive Systems via Host-guest Interactions. Materials Chemistry Frontiers, 8, 1212-1229. https://doi.org/10.1039/d3qm01176c
|
[15]
|
Qu, D., Wang, Q., Zhang, Q., Ma, X. and Tian, H. (2015) Photoresponsive Host-Guest Functional Systems. Chemical Reviews, 115, 7543-7588. https://doi.org/10.1021/cr5006342
|
[16]
|
Wang, L. and Li, Q. (2018) Photochromism into Nanosystems: Towards Lighting up the Future Nanoworld. Chemical Society Reviews, 47, 1044-1097. https://doi.org/10.1039/c7cs00630f
|
[17]
|
Lou, X. and Yang, Y. (2020) Pillar[n]arene‐Based Supramolecular Switches in Solution and on Surfaces. Advanced Materials, 32, Article ID: 2003263. https://doi.org/10.1002/adma.202003263
|
[18]
|
Ogoshi, T., Kida, K. and Yamagishi, T. (2012) Photoreversible Switching of the Lower Critical Solution Temperature in a Photoresponsive Host-Guest System of Pillar[6]arene with Triethylene Oxide Substituents and an Azobenzene Derivative. Journal of the American Chemical Society, 134, 20146-20150. https://doi.org/10.1021/ja3091033
|
[19]
|
Yu, G., Han, C., Zhang, Z., Chen, J., Yan, X., Zheng, B., et al. (2012) Pillar[6]arene-Based Photoresponsive Host-Guest Complexation. Journal of the American Chemical Society, 134, 8711-8717. https://doi.org/10.1021/ja302998q
|
[20]
|
Xia, D., Yu, G., Li, J. and Huang, F. (2014) Photo-Responsive Self-Assembly Based on a Water-Soluble Pillar[6]arene and an Azobenzene-Containing Amphiphile in Water. Chemical Communications, 50, 3606-3608. https://doi.org/10.1039/c3cc49686d
|
[21]
|
Yu, Y., Qu, X., Li, J., Huang, F. and Yang, J. (2023) Arylazopyrazole as a Photo-Switch for Controllable Self-Assembly of Pillar[6]arene-Based Supramolecular Amphiphiles. Chemical Communications, 59, 14265-14268. https://doi.org/10.1039/d3cc05018a
|
[22]
|
Wang, Y., Xu, J., Chen, Y., Niu, L., Wu, L., Tung, C., et al. (2014) Photoresponsive Supramolecular Self-Assembly of Monofunctionalized Pillar[5]arene Based on Stiff Stilbene. Chemical Communications, 50, 7001-7003. https://doi.org/10.1039/c4cc02760d
|
[23]
|
Pan, S., Ni, M., Mu, B., Li, Q., Hu, X., Lin, C., et al. (2015) Well‐Defined Pillararene‐Based Azobenzene Liquid Crystalline Photoresponsive Materials and Their Thin Films with Photomodulated Surfaces. Advanced Functional Materials, 25, 3571-3580. https://doi.org/10.1002/adfm.201500942
|
[24]
|
Ogoshi, T., Takashima, S. and Yamagishi, T. (2018) Photocontrolled Reversible Guest Uptake, Storage, and Release by Azobenzene-Modified Microporous Multilayer Films of Pillar[5]arenes. Journal of the American Chemical Society, 140, 1544-1548. https://doi.org/10.1021/jacs.7b12893
|
[25]
|
Stoddart, J.F. (2017) Mechanically Interlocked Molecules (MIMs)—Molecular Shuttles, Switches, and Machines (Nobel Lecture). Angewandte Chemie International Edition, 56, 11094-11125. https://doi.org/10.1002/anie.201703216
|
[26]
|
Mena-Hernando, S. and Pérez, E.M. (2019) Mechanically Interlocked Materials. Rotaxanes and Catenanes Beyond the Small Molecule. Chemical Society Reviews, 48, 5016-5032. https://doi.org/10.1039/c8cs00888d
|
[27]
|
Kato, K., Fa, S., Ohtani, S., Shi, T., Brouwer, A.M. and Ogoshi, T. (2022) Noncovalently Bound and Mechanically Interlocked Systems Using Pillar[n]arenes. Chemical Society Reviews, 51, 3648-3687. https://doi.org/10.1039/d2cs00169a
|
[28]
|
Ogoshi, T., Yamafuji, D., Aoki, T. and Yamagishi, T. (2011) Photoreversible Transformation between Seconds and Hours Time-Scales: Threading of Pillar[5]arene onto the Azobenzene-End of a Viologen Derivative. The Journal of Organic Chemistry, 76, 9497-9503. https://doi.org/10.1021/jo202040p
|
[29]
|
Ogoshi, T., Kotera, D., Fa, S., Nishida, S., Kakuta, T., Yamagishi, T., et al. (2020) A Light-Operated Pillar[6]arene-Based Molecular Shuttle. Chemical Communications, 56, 10871-10874. https://doi.org/10.1039/d0cc03945d
|
[30]
|
Wang, Y., Tian, Y., Chen, Y., Niu, L., Wu, L., Tung, C., et al. (2018) A Light-Driven Molecular Machine Based on Stiff Stilbene. Chemical Communications, 54, 7991-7994. https://doi.org/10.1039/c8cc04542a
|
[31]
|
Yao, J., Wu, W., Xiao, C., Su, D., Zhong, Z., Mori, T., et al. (2021) Overtemperature-Protection Intelligent Molecular Chiroptical Photoswitches. Nature Communications, 12, Article No. 2600. https://doi.org/10.1038/s41467-021-22880-z
|
[32]
|
Tuo, D., Shi, T., Ohtani, S. and Ogoshi, T. (2023) Responsive Pillar[n]arene Materials. Responsive Materials, 2, e20230024. https://doi.org/10.1002/rpm.20230024
|
[33]
|
Jothi Nayaki, S., Roja, A., Ravindhiran, R., Sivarajan, K., Arunachalam, M. and Dhandapani, K. (2024) Pillar[n]arenes in the Fight against Biofilms: Current Developments and Future Perspectives. ACS Infectious Diseases, 10, 1080-1096. https://doi.org/10.1021/acsinfecdis.3c00697
|
[34]
|
Wang, Z., Wang, X. and Yang, Y. (2023) Pillararene‐Based Supramolecular Polymers for Adsorption and Separation. Advanced Materials, 36, Article ID: 2301721. https://doi.org/10.1002/adma.202301721
|
[35]
|
Zhou, L., Cao, S., Liu, C., Zhang, H. and Zhao, Y. (2023) Pillar[n]arene-Based Polymeric Systems for Biomedical Applications. Coordination Chemistry Reviews, 491, Article ID: 215260. https://doi.org/10.1016/j.ccr.2023.215260
|
[36]
|
Panja, S. and Adams, D.J. (2021) Stimuli Responsive Dynamic Transformations in Supramolecular Gels. Chemical Society Reviews, 50, 5165-5200. https://doi.org/10.1039/d0cs01166e
|
[37]
|
Chen, L. and Yang, H. (2018) Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions. Accounts of Chemical Research, 51, 2699-2710. https://doi.org/10.1021/acs.accounts.8b00317
|
[38]
|
Lu, W., Le, X., Zhang, J., Huang, Y. and Chen, T. (2017) Supramolecular Shape Memory Hydrogels: A New Bridge between Stimuli-Responsive Polymers and Supramolecular Chemistry. Chemical Society Reviews, 46, 1284-1294. https://doi.org/10.1039/c6cs00754f
|
[39]
|
Braegelman, A.S. and Webber, M.J. (2019) Integrating Stimuli-Responsive Properties in Host-Guest Supramolecular Drug Delivery Systems. Theranostics, 9, 3017-3040. https://doi.org/10.7150/thno.31913
|
[40]
|
Xia, D., Wang, P., Ji, X., Khashab, N.M., Sessler, J.L. and Huang, F. (2020) Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host-Guest Interactions. Chemical Reviews, 120, 6070-6123. https://doi.org/10.1021/acs.chemrev.9b00839
|
[41]
|
Lou, X., Zhang, S., Wang, Y. and Yang, Y. (2023) Smart Organic Materials Based on Macrocycle Hosts. Chemical Society Reviews, 52, 6644-6663. https://doi.org/10.1039/d3cs00506b
|