基于柱芳烃的光响应主–客体超分子体系研究进展
Research Progress on Photoresponsive Host-Guest Supramolecular Systems Based on Pillararenes
DOI: 10.12677/aac.2025.151003, PDF, HTML, XML,   
作者: 刘傲冉, 龚文平:浙江师范大学化学与材料科学学院,浙江 金华
关键词: 柱芳烃主–客体作用光响应超分子组装Pillar[n]arenes Host-Guest Interaction Photoresponsive Supramolecular Assembly
摘要: 柱芳烃是一类具有独特对称性和柱状空腔结构的新型人工合成大环分子,可通过简单的化学方法对其端基进行功能化修饰,目前已发展成为一类重要的大环基元分子用于构筑各种刺激响应的功能超分子组装材料。光是一种清洁、非侵入性和时空可控的外部刺激,具有光刺激响应特性的主–客体作用超分子体系受到广泛关注。文章总结了近年来在基于柱芳烃的光响应主–客体超分子组装体系和功能材料方面的重要研究进展,系统阐述了目前报道的光响应柱芳烃主–客体超分子组装体系的主要构筑策略和代表性应用。
Abstract: Pillar[n]arenes are a class of artificial synthetic macrocyclic molecules featuring unique symmetrical and pillar-shaped cavity structures, as well as facile functionalization by chemically modifying their end groups. These features have conferred pillar[n]arenes to be of fundamental importance as macrocyclic building blocks for the construction of copious stimuli-responsive functional supramolecular assembly systems and materials. Light represents a clean and noninvasive external stimulus with unique spatiotemporal controllability, which has attracted considerable attention to the development of photoresponsive host-guest supramolecular systems. This review mainly summarizes the recent progress on photoresponsive pillar[n]arene-based host-guest supramolecular assembly systems and functional materials, with systematical elaboration and perspectives on their construction strategies and applications of currently reported photoresponsive pillar[n]arene-based host-guest supramolecular assembly systems and materials.
文章引用:刘傲冉, 龚文平. 基于柱芳烃的光响应主–客体超分子体系研究进展[J]. 分析化学进展, 2025, 15(1): 22-33. https://doi.org/10.12677/aac.2025.151003

1. 背景介绍

大环分子(如冠醚、环糊精、杯芳烃、葫芦脲和柱芳烃等)是构筑超分子组装体系和功能材料的重要基元结构[1]。基于大环分子的主–客体作用是最重要的分子间相互作用之一,已被广泛用于构筑各种超分子组装结构和功能体系,并在识别传感[2] [3]、分子机器[4]、超分子催化、超分子聚合物[5]、超分子有机框架[6]、动态聚合物材料[7]和生物医用材料[8]等诸多领域,展示出了巨大的应用潜力。在众多大环分子中,日本科学家Ogoshi及其同事于2008年首次合成了一类由对苯二酚或对苯二酚醚通过亚甲基桥在苯环的对位连接而成的大环分子,并将其命名为Pillar[n]arene (即柱芳烃) (图1) [9]。相比于其他几类经典大环分子,柱芳烃具有独特柱状刚性结构,并且易于在其两端进行功能化修饰,这些特征使得柱芳烃成为一类备受青睐的大环主体分子,被广泛用于构筑各种功能超分子组装体和材料[10]-[14]

Figure 1. Condensation of 1,4-dimethoxybenzene with Lewis acids [9]

1. 1,4-二甲氧基苯与路易斯酸的缩合反应[9]

另一方面,由于主–客体作用具有刺激响应性,因而通过引入合适的刺激响应元素可以可逆地调控大环主体与客体分子之间的络合行为。柱芳烃的独特柱状分子结构和富电子疏水空腔,赋予其可与多种带正电荷或中性客体分子进行主–客体络合的能力(图2(a));另一方面,柱芳烃大环两端易于修饰,进一步拓宽了能够与其络合的客体范围,以及可应用的溶剂环境。上述特点使得基于柱芳烃的主–客体作用体系对多种外界刺激都具有较好的响应性,迄今为止,已有包括pH、光、氧化–还原、温度、竞争客体在内的各种类型刺激响应性柱芳烃主–客体作用体系被相继报道(图2(b))。其中,光具有清洁、时空可控、快速响应、生物友好等突出优点,使得光刺激响应的柱芳烃主–客体作用体系备受关注[15]-[17]。本文主要总结了近年来在光响应柱芳烃主–客体作用体系构筑和应用方面的重要研究进展,讨论了目前存在的问题和挑战,并展望了未来发展机遇。

Figure 2. (a) Molecular structures and space-filling models of pillar[5]arene and pillar[6]arene, as well as the chemical structures of typical guests for pillar[n]arene derivatives; (b) Schematic illustration of pillar[n]arene-based supramolecular switches regulated by pH, redox, competitive binding, light and temperature [17]

2. (a) 柱[5]/[6]芳烃的化学结构和分子模型,以及能够与它们进行主–客体络合的典型客体分子的化学结构;(b) 具有pH、氧化还原、竞争结合、光和温度等刺激响应调控的柱[n]芳烃基超分子开关示意图[17]

2. 基于非光活性柱芳烃大环与光响应客体的主–客体作用体系

构筑光响应柱芳烃主客体作用体系的一种常用策略是利用非光活性柱芳烃大环与合适的光响应客体分子之间的主客体作用。2012年,浙江大学黄飞鹤课题组首次报道了基于柱[6]芳烃偶氮苯客体的光响应主–客体作用模式[18]。如图3(a)所示,含反式偶氮苯单元的客体E-G6可以被柱[6]芳烃P[6]-1的空腔包结形成主–客体络合物E-G6⊂P[6]-1,经过365 nm紫外光激发后,可以促发E-G6异构化为含顺式偶氮苯单元的Z-G6,其不能与P[6]-1进行主客体络合;而经435 nm可见光照射后,可以重新形成主–客体络合物E-G6⊂P[6]-1。因此,在交替光照条件下,可以实现G6与P[6]-1的光开关主客体络合。随后,他们还发现利用这种光控主–客体络合性质能够实现光调控客体分子的聚集组装行为。同年,日本科学家Ogoshi [19]合成了一种含有烷氧取代基且在水溶液中具有较低临界溶解温度(LCST)的水溶性柱[6]芳烃(图3(b)中P[6]-2),通过其与偶氮苯客体G5的光开关主客络合作用,首次实现了光开关调控简单主–客体系统的LCST。如图3(b)所示,反式偶氮苯客体G5能够被柱[6]芳烃P[6]-2包结形成稳定的1:1络合物,这种主客体络合作用提高体系的浊点(Tcloud)。紫外光照射可以诱导偶氮苯客体G5发生E→Z异构化,由于顺式偶氮苯客体Z-G5与P[6]-2之间的尺寸不匹配而解离,从而降低体系浊点使溶液浑浊;而使用可见光照射可以诱导G5发生Z→E异构化并重新与P[6]-2络合,使得体系浊点升高,溶液恢复澄清。以上两项工作开拓了基于柱芳烃的光响应主客体作用体系,使其成为偶氮苯/环糊精识别基序之外的另一类具有重要应用前景的新模式。

Figure 3. (a) Pillar[6]arene-based photoresponsive host-guest complexation, as well as its photocontrolled self-assembly behavior [19]; (b) Photoreversible switching of the lower critical solution temperature in a photoresponsive host-guest system of pillar[6]arene with triethylene oxide substituents and an azobenzene derivative [18]

3. (a) 基于柱[6]芳烃与偶氮苯客体的光控主–客体络合及其光控自组装行为[19];(b) 基于乙氧基取代柱[6]芳烃与偶氮苯衍生物构筑的光响应主–客体作用体系及其光开关调控低临界溶液温度示意图[18]

2014年,黄飞鹤课题组[20]进一步构建了一类基于水溶性柱[6]芳烃(WP6)和偶氮苯客体(G6)之间的光开关分子识别基序,并实现了水相中的光响应自组装。如图4(a)所示,在与WP6络合之前,含反式偶氮苯单元的客体E-G6A本身可自行组装成固体纳米颗粒,而加入主体分子WP6后,二者的主客体络合物可以进一步组装成囊泡。并且通过紫外/可见光诱导客体分子的可逆顺反光异构化,可以实现囊泡和固体纳米颗粒之间的可逆转变。

2023年,南京林业大学杨杰等人[21]则报道了一类基于阳离子柱[6]芳烃(CWP6)和偶氮芳基吡唑衍生物(AAP1和AAP2)的水相光响应主–客体分子识别基序(图4(b))。在紫外光/绿光交替照射条件下,可以诱导AAP1的可逆顺反光异构化,并实现光开关调控其与CWP6之间的主–客体络合物(CWP6⊃trans-AAP1)的形成和解离。进一步利用这种可开关主–客体识别作用,构筑了光响应的超两亲性组装体,在交替的UV/绿光照射下,能够可逆调控其自组装过程和组装体的形态变化。上述这两类高效水相光响应主–客体作用体系的开发有望提供一种制造复杂光响应超分子组装系统的新工具,在药物输送与控制释放、纳米反应器、超分子聚合物和检测等领域得到应用。

黄飞鹤、杨杰等人基于非光活性柱芳烃大环与光响应客体的主–客体作用体系这类模式,进行了一系列研究,研究了客体在光的照射下可以变换形态,这一过程引起的结构变化可以改变大环主体与客体分子的络合行为。这些高效的光响应主客体复合物可以丰富用于制造复杂的光响应超分子系统的工具箱。但是由于受限于柱芳烃大环的空腔大小,这种模式只能针对特定结构的客体分子,对大部分客体不适用,不具有普适性。因此,发展具有普适性的光响应柱芳烃主–客体作用模式具有很高的研究价值。

Figure 4. (a) Photoresponsive self-assembly based on a water-soluble pillar[6]arene and an azobenzene-containing amphiphile in water [20]; (b) Chemical structures and cartoon illustration of the photoresponsive host-guest complex between CWP6 and AAP1 in water [21]

4. (a) 水溶性柱[6]芳烃和含偶氮苯的两亲体在水中的光响应自组装[20];(b) 柱芳烃CWP6和偶氮苯客体AAP1的化学结构,以及它们在水中的光响应主–客体络合作用卡通示意图[21]

3. 基于含共价修饰光响应基团柱芳烃大环的光响应主–客体作用体系

另一种常用策略是在柱芳烃大环的两端共价键修饰光响应的客体基元模块,从而构建基于柱芳烃的光控分子内主–客体作用体系。例如,2014年,北京师范大学杨清正等人[22]设计合成了一类含有单取代二芳基乙烯和客体基元模块的光响应柱[5]芳烃(图5(a)中Z-1)。在387 nm和360 nm光照条件下,可以诱导该柱[5]芳烃中的二芳基乙烯单元发生可逆E/Z光异构化,并且,两种异构体Z-1/E-1能够表现出不同的自组装行为。如图5(b)所示,异构体Z-1可根据浓度不同,形成自络合[1]准轮烷或[c2]菊花链;而异构体E-1则倾向于形成线性聚合物,并且其聚合度对溶液pH值敏感。该体系的构建将有助于设计新的光响应超分子自组装系统。

2015年,南京大学谌东中和王乐勇等人[23]合作报道了一类两端对称修饰了含偶氮苯单元长烷基链的柱状[5]准轮烷芳烃衍生物xx (图6);当偶氮苯处于反式构象时,其能够在表面组装成结构明确的液晶组装体,并且含有不同长度间隔基团的柱状[5]芳烃基大环偶氮苯能够表现出宽温度范围的近晶液晶中间相和优异的成膜性能。由于柱状[5]芳烃大环骨架能够为两端的偶氮苯单元提供了足够的自由体积,以实现其可逆光异构化,这使得薄膜对表面自由能、润湿性,甚至上层盘状液晶柱状中间相等方面展现出优异的光调控性。这种偶氮苯修饰的柱[5]芳烃液晶代表一类新型且有前景的光响应性材料,有望得到广泛应用。

Figure 5. (a) Chemical structures of stiff stilbene modified pillar[5]arenes Z-1, E-1 and E-2; (b) Schematic illustrations of the supramolecular assemblies of E-1 and E-2 [22]

5. (a) 单侧修饰刚性二苯乙烯的柱[5]芳烃Z-1、E-1和E-2的化学结构;(b) E-1和E-2的超分子组装示意图[22]

Figure 6. (a) Chemical structures of stiff stilbene modified pillar[5]arenes Z-1, E-1 and E-2; (b) Schematic illustrations of the supramolecular assemblies of E-1 and E-2 [23]

6. (a) 刚性二苯乙烯改性柱[5]芳烃Z-1、E-1和E-2的化学结构;(b) E-1和E-2的超分子组装示意图[23]

2018年,Ogoshi课题组[24]设计合成了一类单侧共价修饰偶氮苯单元的阳离子型光响应柱[5]芳烃azo-P+ (图7(a)),并利用其与阴离子型非光活性柱[5]芳烃(P-)在表面进行层层组装得到微孔薄膜结构。在紫外和可见光的照射条件下,可以诱导微孔薄膜结构中的偶氮苯发生可逆顺反光异构化,从而实现直接光控对二硝基苯(p-DNB)的吸附和释放(图7(b))。此外,将这种基于光响应柱芳烃的微孔薄膜作为光掩模(photomask)还可以对其进行光图案化。本研究提供了一种获得官能化微孔多层膜的简单新方法,有望在分子水平上构建具有各种功能的新一代智能微孔薄膜。

Figure 7. (a) Construction of microporous multilayer films with azobenzene valves attached to pore outlets from LbL assembly by consecutive adsorption of cationic (P+) and anionic (P) pillar[5]arenes and a cationic pillar[5]arene bearing one azobenzene moiety (Azo-P+); (b) Photocontrolled reversible guest uptake, storage, and release by azobenzene-modified microporous multilayer films of pillar[5]arenes [24]

7. (a) 通过连续吸附正离子(P+)和阴离子(P)柱[5]芳烃和带有一个偶氮苯的阳离子柱[5]芳烃(Azo-P+)构建孔出口含偶氮苯阀的微孔多层膜;(b) 偶氮苯修饰的柱[5]芳烃微孔多层膜对客体的光控可逆吸收、储存和释放[24]

基于上述柱芳烃的小分子或大分子组装的光开关调控研究,柔性柱[n]芳烃基聚合物充分利用自组装的动态过程来精确控制自组装材料的理化性质。在多个非共价相互作用的协同作用下,通过自发聚集来制备具有复杂超分子结构的高级材料。特别是,非共价相互作用往往具有方向性和选择性,促使合成的材料具有一定的规律性和秩序性。实现了从自组装到拆卸的动态可逆刺激响应过程,为解决各种实际问题提供了一种有趣的补充途径。

4. 基于光响应柱芳烃主–客体作用的机械互锁分子机器

机械互锁分子(如轮烷和索烃)具有大幅度组分相对运动的特点,被广泛用于构筑具有特定功能的分子机器和动态材料[4] [25] [26]。柱芳烃作为一类重要的大环分子,也被广泛用于合成各种机械互锁分子[27]。例如,2011年,Ogoshi课题组[28]利用羟基化的柱[5]芳烃与末端修饰偶氮苯单元的线性客体构筑了光响应主–客体作用体系(图8(a))。研究表明,客体末端的偶氮苯可以作为光门控基团,通过其顺反光异构化可以调控柱[5]芳烃大环与客体的络合速率(从几秒到几小时)。此外,还可以通过改变温度实现该体系的动态调谐,从而利用光和加热/冷却两种正交刺激来实现在时间尺度上调控大环组分的穿梭运动。2020年,他们[29]进一步合成了一类由柱[6]芳烃大环和含偶氮苯单元的轴线组成的光响应[2]轮烷分子梭。如图8(b)所示,该[2]轮烷轴线中间的偶氮苯单元可以起到光门控作用,实现可逆光调控[6]芳烃大环在轴线上进行穿梭运动的速率快慢。当偶氮苯处于E式时,柱[6]芳烃大环可以在两端烷基位点之间进行快速穿梭;而紫外光照诱导偶氮苯光异构化为Z式后,可以有效抑制柱[6]芳烃大环的穿梭。这是基于柱状芳烃大环构筑的第一例光控分子梭,而对这种简单的光控分子梭的基本理解将有助于设计更复杂的超分子组装体。

Figure 8. (a) Photocontrolled threading of pillar[5]arene onto the azobenzene-end of a viologen derivative [29]; (b) A light-operated pillar[6]arene-based molecular shuttle [29]

8. (a) 柱[5]芳烃大环在以偶氮苯封端的线性紫精客体上的光控穿线行为[29];(b) 基于柱[6]芳烃的光控分子梭[29]

2018年,杨清正课题组[30]设计合成了一种基于柱[5]芳烃大环和二苯乙烯单元的光响应[1]轮烷分子机器(图9(a)中Z-1),其中,二苯乙烯单元既作为触发轮烷柱[5]芳烃大环进行运动的光致异构化基团,也作为阻止其脱离轴线的封端基团。通过387 nm和360 nm光照可以促发二苯乙烯单元的可逆E/Z光异构化,从而驱动柱[5]芳烃大环在A位点和B位点之间进行平移穿梭运动。该分子机器能够在光刺激下实现纳米尺度上分子亚单元之间的相对运动,其各个组分单元能够进行独立结构修饰,并同时保持大规模构象变化。这种灵活设计对于理解分子光机械能量转换的广泛结构/性能关系,以及优化马达结构以适应特定任务等都很有价值。

Figure 9. (a) Structure and synthesis of stiff stilbene and pillar[5]arene based [1]rotaxane Z-1; (b) A schematic presentation of the directed motion of the wheel triggered by photoisomerization of stiff stilbene. The blue (A) and red (B) rectangles represent two localization sites of the “wheel” [30]

9. (a) 基于刚性二苯乙烯和柱[5]芳烃的[1]轮烷Z-1的结构和合成;(b) 刚性二苯乙烯光异构化驱动的轮组分定向运动示意图。蓝色(A)和红色(B)矩形表示柱[5]芳烃“轮”的两个识别位点[30]

2021年,四川大学杨成课题组[31]报道了一类含偶氮苯稠合双环柱[n]芳烃结构的分子万向节MUJ1~MUJ3 (图10(a)),并应用它们构建了智能分子手性光开关(图10(b)~10(d))。研究表明,通过偶氮苯单元的可逆Z/E光异构化作用,可以实现光调控MUJ分子中偶氮苯单元进/出柱芳烃大环空腔的构象转换,从而导致MUJ的平面手性转换。同时,由于环翻转过程中熵的显著变化,温度变化也被证明会导致构象/手性反转。因此,当温度超过上限时,可以禁止光诱导的手性开关。这项研究在分子水平上实现了具有挑战性的高温门控效应,为构建能够执行复杂功能的智能分子机器/设备迈出了重要一步。

基于柱[n]芳烃的机械互锁分子,因为柱[n]芳烃对于机械互锁分子设计、合成和应用具有各种优点。柱[n]芳烃的高度对称的柱状和规则多边形结构有利于表征具有复杂结构的机械互锁分子及其环运动分析。然而,基于柱[n]芳烃的机械互锁分子仍需要进一步扩展,基于独特的柱[n]芳烃性质所面临的一些挑战:(i) 平面手性的控制:平面手性机械互锁分子的不对称合成、手性转移以及通过机械互锁形成来放大柱[n]芳烃的平面手性是基于柱[n]芳烃的平面手性的有趣课题。(ii) 复杂动态:即使形成[2]轮烷,较高柱[n]芳烃环中的单元也可以旋转,因为即使在轴存在的情况下,在空腔中仍然存在空间。(iii) 固态络合:由于柱[n]芳烃甚至可以在固态下形成主客体复合物,机械互锁分子的固态合成和机械互锁分子的柱[n]芳烃环在固态下的运动是新的研究方向。尽管已经报道了柱[n]芳烃机械互锁分子的各种例子,但许多令人兴奋的长期可能性尚未得到研究。

5. 总结与展望

基于非共价键相互作用(如氢键、电荷转移(CT)、芳香和主–客体相互作用)的刺激响应材料很有趣[32]-[35],因为非共价键相互作用的裂解和重组可以通过施加外部刺激(如光、pH、温度和化学添加剂)轻松实现。但是,在这些刺激响应方式中,光因具有时空可控、快速响应、清洁的优势而被人们广泛关注。[36]-[41]本综述主要展示了几年来在光响应柱芳烃主–客体作用体系方面的一些重要进展,讨论它们的构筑策略以及在光控分子组装和分子机器等方面的代表性应用。尽管目前已经在基于柱芳烃的光响应主–客体作用构筑功能材料方面取得了一定的进展,但是现已报道的用于构筑这类体系的有效策略仍然十分有限。另一方面,虽然已有部分报道成功构筑基于水相光响应柱芳烃主–客体作用的功能组装体,但它们绝大多数是通过穿透能力较弱的紫外光或者短波长可见光进行激发的,因而限制了其在生物医用

Figure 10. (a) Chemical structures of the azobenzene-fused bicyclic pillar[n]arene derivatives MUJ1~MUJ3, and the guests of G1 and G2; (b) Schematic diagram for the in-out equilibrium of the enantiomers of trans-MUJ1; (c) The competitive complexation of MUJs; (d) Light-driven chirality switching of (in-Rp/out-Sp)-MUJ1 [31]

10. (a) 偶氮苯稠合柱[n]芳烃的双环衍生物MUJ1~MUJ3以及客体G1和G2的化学结构;(b) 反式MUJ1对映体的手性翻转平衡示意图;(c) MUJ分子的竞争性络合行为;(d) MUJ1的光控偶氮苯进出大环空腔示意图[31]

材料领域的应用。总之,发展新策略或者合成独特柱芳烃结构用以构筑光刺激响应的主–客体作用新模式,特别是开发具有长波长光(红光)刺激响应的柱芳烃主–客体作用模式,将为创制光响应智能超分子材料提供新机遇。

参考文献

[1] Liu, Z., Nalluri, S.K.M. and Stoddart, J.F. (2017) Surveying Macrocyclic Chemistry: From Flexible Crown Ethers to Rigid Cyclophanes. Chemical Society Reviews, 46, 2459-2478.
https://doi.org/10.1039/c7cs00185a
[2] Yang, L., Wang, X., Yao, H. and Jiang, W. (2019) Naphthotubes: Macrocyclic Hosts with a Biomimetic Cavity Feature. Accounts of Chemical Research, 53, 198-208.
https://doi.org/10.1021/acs.accounts.9b00415
[3] Chen, F., Geng, W., Cai, K. and Guo, D. (2024) Molecular Recognition of Cyclophanes in Water. Chinese Chemical Letters, 35, Article ID: 109161.
https://doi.org/10.1016/j.cclet.2023.109161
[4] Xue, M., Yang, Y., Chi, X., Yan, X. and Huang, F. (2015) Development of Pseudorotaxanes and Rotaxanes: From Synthesis to Stimuli-Responsive Motions to Applications. Chemical Reviews, 115, 7398-7501.
https://doi.org/10.1021/cr5005869
[5] Assaf, K.I. and Nau, W.M. (2015) Cucurbiturils: From Synthesis to High-Affinity Binding and Catalysis. Chemical Society Reviews, 44, 394-418.
https://doi.org/10.1039/c4cs00273c
[6] Wang, C., Xu, L., Jia, Z. and Loh, T. (2024) Recent Applications of Macrocycles in Supramolecular Catalysis. Chinese Chemical Letters, 35, Article ID: 109075.
https://doi.org/10.1016/j.cclet.2023.109075
[7] Ma, X. and Zhao, Y. (2014) Biomedical Applications of Supramolecular Systems Based on Host-Guest Interactions. Chemical Reviews, 115, 7794-7839.
https://doi.org/10.1021/cr500392w
[8] Geng, W., Sessler, J.L. and Guo, D. (2020) Supramolecular Prodrugs Based on Host-Guest Interactions. Chemical Society Reviews, 49, 2303-2315.
https://doi.org/10.1039/c9cs00622b
[9] Ogoshi, T., Kanai, S., Fujinami, S., Yamagishi, T. and Nakamoto, Y. (2008) para-Bridged Symmetrical Pillar[5]arenes: Their Lewis Acid Catalyzed Synthesis and Host-Guest Property. Journal of the American Chemical Society, 130, 5022-5023.
https://doi.org/10.1021/ja711260m
[10] Strutt, N.L., Zhang, H., Schneebeli, S.T. and Stoddart, J.F. (2014) Functionalizing Pillar[n]arenes. Accounts of Chemical Research, 47, 2631-2642.
https://doi.org/10.1021/ar500177d
[11] Si, W., Xin, P., Li, Z. and Hou, J. (2015) Tubular Unimolecular Transmembrane Channels: Construction Strategy and Transport Activities. Accounts of Chemical Research, 48, 1612-1619.
https://doi.org/10.1021/acs.accounts.5b00143
[12] Ogoshi, T., Yamagishi, T. and Nakamoto, Y. (2016) Pillar-Shaped Macrocyclic Hosts Pillar[n]arenes: New Key Players for Supramolecular Chemistry. Chemical Reviews, 116, 7937-8002.
https://doi.org/10.1021/acs.chemrev.5b00765
[13] Li, Z. and Yang, Y. (2021) Functional Materials with Pillarene Struts. Accounts of Materials Research, 2, 292-305.
https://doi.org/10.1021/accountsmr.1c00042
[14] Wada, K. and Ogoshi, T. (2024) Functionalization of Pillar[n]arenes towards Optically Responsive Systems via Host-guest Interactions. Materials Chemistry Frontiers, 8, 1212-1229.
https://doi.org/10.1039/d3qm01176c
[15] Qu, D., Wang, Q., Zhang, Q., Ma, X. and Tian, H. (2015) Photoresponsive Host-Guest Functional Systems. Chemical Reviews, 115, 7543-7588.
https://doi.org/10.1021/cr5006342
[16] Wang, L. and Li, Q. (2018) Photochromism into Nanosystems: Towards Lighting up the Future Nanoworld. Chemical Society Reviews, 47, 1044-1097.
https://doi.org/10.1039/c7cs00630f
[17] Lou, X. and Yang, Y. (2020) Pillar[n]arene‐Based Supramolecular Switches in Solution and on Surfaces. Advanced Materials, 32, Article ID: 2003263.
https://doi.org/10.1002/adma.202003263
[18] Ogoshi, T., Kida, K. and Yamagishi, T. (2012) Photoreversible Switching of the Lower Critical Solution Temperature in a Photoresponsive Host-Guest System of Pillar[6]arene with Triethylene Oxide Substituents and an Azobenzene Derivative. Journal of the American Chemical Society, 134, 20146-20150.
https://doi.org/10.1021/ja3091033
[19] Yu, G., Han, C., Zhang, Z., Chen, J., Yan, X., Zheng, B., et al. (2012) Pillar[6]arene-Based Photoresponsive Host-Guest Complexation. Journal of the American Chemical Society, 134, 8711-8717.
https://doi.org/10.1021/ja302998q
[20] Xia, D., Yu, G., Li, J. and Huang, F. (2014) Photo-Responsive Self-Assembly Based on a Water-Soluble Pillar[6]arene and an Azobenzene-Containing Amphiphile in Water. Chemical Communications, 50, 3606-3608.
https://doi.org/10.1039/c3cc49686d
[21] Yu, Y., Qu, X., Li, J., Huang, F. and Yang, J. (2023) Arylazopyrazole as a Photo-Switch for Controllable Self-Assembly of Pillar[6]arene-Based Supramolecular Amphiphiles. Chemical Communications, 59, 14265-14268.
https://doi.org/10.1039/d3cc05018a
[22] Wang, Y., Xu, J., Chen, Y., Niu, L., Wu, L., Tung, C., et al. (2014) Photoresponsive Supramolecular Self-Assembly of Monofunctionalized Pillar[5]arene Based on Stiff Stilbene. Chemical Communications, 50, 7001-7003.
https://doi.org/10.1039/c4cc02760d
[23] Pan, S., Ni, M., Mu, B., Li, Q., Hu, X., Lin, C., et al. (2015) Well‐Defined Pillararene‐Based Azobenzene Liquid Crystalline Photoresponsive Materials and Their Thin Films with Photomodulated Surfaces. Advanced Functional Materials, 25, 3571-3580.
https://doi.org/10.1002/adfm.201500942
[24] Ogoshi, T., Takashima, S. and Yamagishi, T. (2018) Photocontrolled Reversible Guest Uptake, Storage, and Release by Azobenzene-Modified Microporous Multilayer Films of Pillar[5]arenes. Journal of the American Chemical Society, 140, 1544-1548.
https://doi.org/10.1021/jacs.7b12893
[25] Stoddart, J.F. (2017) Mechanically Interlocked Molecules (MIMs)—Molecular Shuttles, Switches, and Machines (Nobel Lecture). Angewandte Chemie International Edition, 56, 11094-11125.
https://doi.org/10.1002/anie.201703216
[26] Mena-Hernando, S. and Pérez, E.M. (2019) Mechanically Interlocked Materials. Rotaxanes and Catenanes Beyond the Small Molecule. Chemical Society Reviews, 48, 5016-5032.
https://doi.org/10.1039/c8cs00888d
[27] Kato, K., Fa, S., Ohtani, S., Shi, T., Brouwer, A.M. and Ogoshi, T. (2022) Noncovalently Bound and Mechanically Interlocked Systems Using Pillar[n]arenes. Chemical Society Reviews, 51, 3648-3687.
https://doi.org/10.1039/d2cs00169a
[28] Ogoshi, T., Yamafuji, D., Aoki, T. and Yamagishi, T. (2011) Photoreversible Transformation between Seconds and Hours Time-Scales: Threading of Pillar[5]arene onto the Azobenzene-End of a Viologen Derivative. The Journal of Organic Chemistry, 76, 9497-9503.
https://doi.org/10.1021/jo202040p
[29] Ogoshi, T., Kotera, D., Fa, S., Nishida, S., Kakuta, T., Yamagishi, T., et al. (2020) A Light-Operated Pillar[6]arene-Based Molecular Shuttle. Chemical Communications, 56, 10871-10874.
https://doi.org/10.1039/d0cc03945d
[30] Wang, Y., Tian, Y., Chen, Y., Niu, L., Wu, L., Tung, C., et al. (2018) A Light-Driven Molecular Machine Based on Stiff Stilbene. Chemical Communications, 54, 7991-7994.
https://doi.org/10.1039/c8cc04542a
[31] Yao, J., Wu, W., Xiao, C., Su, D., Zhong, Z., Mori, T., et al. (2021) Overtemperature-Protection Intelligent Molecular Chiroptical Photoswitches. Nature Communications, 12, Article No. 2600.
https://doi.org/10.1038/s41467-021-22880-z
[32] Tuo, D., Shi, T., Ohtani, S. and Ogoshi, T. (2023) Responsive Pillar[n]arene Materials. Responsive Materials, 2, e20230024.
https://doi.org/10.1002/rpm.20230024
[33] Jothi Nayaki, S., Roja, A., Ravindhiran, R., Sivarajan, K., Arunachalam, M. and Dhandapani, K. (2024) Pillar[n]arenes in the Fight against Biofilms: Current Developments and Future Perspectives. ACS Infectious Diseases, 10, 1080-1096.
https://doi.org/10.1021/acsinfecdis.3c00697
[34] Wang, Z., Wang, X. and Yang, Y. (2023) Pillararene‐Based Supramolecular Polymers for Adsorption and Separation. Advanced Materials, 36, Article ID: 2301721.
https://doi.org/10.1002/adma.202301721
[35] Zhou, L., Cao, S., Liu, C., Zhang, H. and Zhao, Y. (2023) Pillar[n]arene-Based Polymeric Systems for Biomedical Applications. Coordination Chemistry Reviews, 491, Article ID: 215260.
https://doi.org/10.1016/j.ccr.2023.215260
[36] Panja, S. and Adams, D.J. (2021) Stimuli Responsive Dynamic Transformations in Supramolecular Gels. Chemical Society Reviews, 50, 5165-5200.
https://doi.org/10.1039/d0cs01166e
[37] Chen, L. and Yang, H. (2018) Construction of Stimuli-Responsive Functional Materials via Hierarchical Self-Assembly Involving Coordination Interactions. Accounts of Chemical Research, 51, 2699-2710.
https://doi.org/10.1021/acs.accounts.8b00317
[38] Lu, W., Le, X., Zhang, J., Huang, Y. and Chen, T. (2017) Supramolecular Shape Memory Hydrogels: A New Bridge between Stimuli-Responsive Polymers and Supramolecular Chemistry. Chemical Society Reviews, 46, 1284-1294.
https://doi.org/10.1039/c6cs00754f
[39] Braegelman, A.S. and Webber, M.J. (2019) Integrating Stimuli-Responsive Properties in Host-Guest Supramolecular Drug Delivery Systems. Theranostics, 9, 3017-3040.
https://doi.org/10.7150/thno.31913
[40] Xia, D., Wang, P., Ji, X., Khashab, N.M., Sessler, J.L. and Huang, F. (2020) Functional Supramolecular Polymeric Networks: The Marriage of Covalent Polymers and Macrocycle-Based Host-Guest Interactions. Chemical Reviews, 120, 6070-6123.
https://doi.org/10.1021/acs.chemrev.9b00839
[41] Lou, X., Zhang, S., Wang, Y. and Yang, Y. (2023) Smart Organic Materials Based on Macrocycle Hosts. Chemical Society Reviews, 52, 6644-6663.
https://doi.org/10.1039/d3cs00506b