外周血平均血小板体积/淋巴细胞计数(MPVLR)联合APACHE II评分对脓毒症患者预后的预测价值
The Prognostic Value of the Mean Platelet Volume-to-Lymphocyte Ratio Combined (MPVLR) with the APACHE II Score in Predicting the Outcomes of Patients with Sepsis
摘要: 目的:探讨外周血平均血小板体积/淋巴细胞计数(MPVLR)联合APACHE II评分对脓毒症患者预后的预测价值。方法:采用回顾性队列研究方法,选择该院2020年8月至2023年8月收治的符合脓毒症3.0诊断标准的患者。根据脓毒症患者的28 d预后情况分为生存组及死亡组。收集患者的临床资料及确诊脓毒症后24 h内血小板体积(MPV)、淋巴细胞(LYM)计数的最差值,并计算平均血小板体积/淋巴细胞计数(MPVLR)、APACHE II评分及SOFA评分。随后使用多因素Logistic回归分析,确定脓毒症患者预后的影响因素,再构建受试者工作特征曲线,评估各项指标对脓毒症患者预后的预测价值。结果:共纳入患者127例,生存组患者76例,死亡组患者51例。死亡组患者更易合并慢性阻塞性肺疾病,且平均血小板体积(MPV)、平均血小板体积/淋巴细胞计数(MPVLR)、APACHE II评分、SOFA评分、及年龄均高于生存组,且差异具有统计学意义(P < 0.05)。而生存组的外周血淋巴细胞计数均高于死亡组,差异具有统计学意义(P < 0.05)。由多因素Logistic回归分析可知,MPVLR、APACHE II评分是预测脓毒症患者28d死亡的独立危险因素(P < 0.05)。根据ROC曲线结果可知,MPVLR、APACHE II评分及MPVLR联合APACHE II评分的AUC分别为0.840、0.800、0.885。因此,当MPVLR联合APACHE II评分的AUC为0.824时,灵敏度及特异度分别为94.6、82.4%,此时对脓毒症患者预后的预测价值最佳。结论:APACHE II评分、MPVLR是脓毒症患者28d死亡的独立危险因素,且二者联合时对脓毒症患者预后的预测价值更高。
Abstract: Objective: To investigate the prognostic value of the mean platelet volume (MPV)-to-lymphocyte ratio (MPVLR) combined with the APACHE II score in predicting the outcomes of patients with sepsis. Methods: This retrospective study screened patients with sepsis who were hospitalized in our hospital, from August 2020 to August 2023 were included and categorized into the survival group and the non-survival group based on 28-day outcomes of sepsis patients. Clinical date and the worst of mean platelet volume (MPV), lymphocyte (LYM) count values within 24 hours of sepsis diagnosis were collected, MPVLR and APACHE II scores were calculated. Multifactorial logistic regression analysis was used to identify risk factors affecting the prognosis of sepsis patients, and then a subject operating characteristic curve (ROC) was constructed to assess the predictive value of each indicator on the prognosis of sepsis patients. Results: A total of 127 patients were included, with 76 in the survival group and 51 in the non-survival group. Patients in the non-survival group were more likely to have chronic obstructive pulmonary disease, and had significantly higher MPV, MPVLR, APACHE II scores, SOFA scores and age compared to the survival group (P < 0.05). In contrast, peripheral blood lymphocyte counts in the survival group were significantly higher than that in the non-survival group (P < 0.05). Multivariate logistic regression analysis showed that MPVLR and APACHE II scores were independent risk factors for 28-day mortality in sepsis patients (P < 0.05). Receiver operating characteristic curve (ROC) curve analysis showed that the area under the curve (AUC) values for MPVLR, APACHE II scores, and their combination were 0.840, 0.800, and 0.885, respectively. Notably, the MPVLR combined with the APACHE II score showed the best predictive value, with an AUC of 0.824. It demonstrated excellent predictive performance, achieving a sensitivity of 94.6% and a specificity of 82.4%. Conclusion: APACHE II scores and MPVLR are independent risk factors for 28-day mortality in sepsis patients, and their combined use provides higher predictive value.
文章引用:郭宇琴, 刘红玲, 陶武, 王念, 姚钰竹. 外周血平均血小板体积/淋巴细胞计数(MPVLR)联合APACHE II评分对脓毒症患者预后的预测价值[J]. 临床医学进展, 2025, 15(2): 330-337. https://doi.org/10.12677/acm.2025.152351

1. 引言

根据国际指南定义,脓毒症是由宿主对感染的反应失调引起的危及生命的器官功能障碍[1]。据统计,全球估计有3150万脓毒症和1940万严重脓毒症病例,每年可能有530万人死亡[2]。脓毒症是导致大量死亡率、发病率、成本和医疗保健利用率的原因之一[3]。早期识别脓毒症患者可以进行基于证据的干预,如及时的抗生素、目标导向的复苏等,可以大大增加脓毒症患者的生存率[3]。因此,积极寻找一种新的指标预测脓毒症患者的病情及预后已迫在眉睫。

脓毒症的病理生理过程十分复杂,包括炎症、免疫和凝血功能障碍等多个方面,涉及细胞功能、代谢和微循环等各种改变[4] [5]。多项研究证实,淋巴细胞计数降低、平均血小板体积(MPV)升高均是脓毒症患者预后的独立危险因素[6]。平均血小板体积/淋巴细胞计数(MPVLR)作为近年来出现的新型评估指标,反映了机体炎症–免疫–凝血的整体状态,多被用于评估心血管疾病患者的预后[7] [8],但尚未用于预测脓毒症患者的病情及预后。而APACHE II评分是ICU中早期评估危重症患者病情及预后的常用评价指标之一,多项研究均证实较高的APACHE II评分是脓毒症患者预后的独立危险因素,但缺乏一定敏感性[9]-[11],且与其他检验指标联合时预测价值更高[12]。故本研究拟分析MPVLR联合APACHE II评分对脓毒症患者预后的评估价值,以期为脓毒症的早期诊治提供新的可靠依据。

2. 资料与方法

2.1. 临床资料

选取2020年8月至2023年8月重庆医科大学附属永川医院重症医学科及呼吸与危重症医学科收治的符合脓毒症3.0诊断标准[1]、年龄 ≥ 18岁的患者共127例作为研究对象,其中,纳入标准:1) 符合《2016年脓毒症/脓毒症休克治疗国际指南》中的脓毒症诊断标准[1];2) 年龄 ≥ 18岁;3) 临床及病史资料完整。排除标准:1) 住院时间 < 24 h;2) 妊娠及哺乳期妇女;3) 合并恶性肿瘤或血液系统疾病的患者;4) 长期处于免疫抑制状态(如接受长时间激素治疗、骨髓移植的患者);5) 近一周使用过影响血小板或白细胞的药物;6) 近一周输注血小板制品者。

2.2. 方法

1) 根据患者28 d预后情况将患者分为生存组和死亡组。2) 记录两组患者的性别、年龄、吸烟或饮酒史、基础疾病。其中,男78例,女49例;年龄18~80岁;有吸烟史、饮酒史、冠心病、糖尿病、高血压、慢性肾功能不全、慢阻肺的患者分别为60、57、31、43、48、19、20例。3) 在患者被诊断为脓毒症后,根据病例资料及确诊后24 h内的相应检查结果,进行急性生理和慢性健康评分(APACHE II)、续贯器官衰竭评估(SOFA)评分。4) 收集患者确诊脓毒症后24 h内外周静脉血数据,所有数据均取24 h内的最差值。记录淋巴细胞计数(LYM)、平均血小板体积(MPV),并计算平均血小板体积/淋巴细胞计数(MPVLR)。

2.3. 统计学方法

采用SPSS 28.0软件对数据进行处理及统计分析。对于连续性定量资料,如符合正态分布,采用均数± 标准差( x ¯ ±s )表示,组间比较则采用独立样本t检验;如不符合正态分布,则以中位数和四分位数 [ M( Q1,Q3 ) ] 表示,组间比较采用秩和检验。计数资料使用百分比(%)表示,组间比较采用卡方检验或Fisher精确概率法。采用二元多因素Logistic回归分析明确影响脓毒症患者预后的危险因素,然后再绘制受试者工作特征曲线(receiver operating characteristic curve,ROC曲线),评估MPVLR、APACHE II评分、MPVLR联合APACHE II评分对脓毒症患者预后的预测价值。以P < 0.05为差异有统计学意义。

3. 结果

3.1. 临床资料

共纳入127例脓毒症患者,其中生存组76例,死亡组51例。两组患者在性别、吸烟饮酒史以及基础疾病方面进行比较,差异无统计学意义(P > 0.05)。死亡组年龄较存活组更大,并且更易合并慢性阻塞性肺疾病(P < 0.05)。与生存组相比,死亡组的SOFA评分与APACHE II评分更高,结果具有统计学意义(P < 0.05)。详见表1

Table 1. Comparison of clinical data between the two groups of patients M( Q1,Q3 )

1. 两组患者临床资料比较 M( Q1,Q3 )

组别

总数(n = 127)

生存组(n = 76)

死亡组(n = 51)

X 2 /t /Z

P

SOFA评分, M( Q1,Q3 )

4.00 (3.00, 6.00)

3.00 (2.00, 5.00)

6.00 (5.00, 9.00)

−5.340

<0.001

APACHE II评分, M( Q1,Q3 )

18.00 (13.00, 23.50)

14.50 (12.00, 19.00)

23.00 (20.50, 26.00)

−5.722

<0.001

年龄, M( Q1,Q3 )

67.00 (56.00, 76.00)

64.00 (54.75, 75.00)

72.00 (64.00, 79.00)

−2.883

0.004

性别,n (%)

0.389

0.533

78 (61.4)

45 (59.2)

33 (64.7)

49 (38.6)

31 (40.8)

18 (35.3)

吸烟史,n (%)

0.477

0.490

67 (52.8)

42 (55.3)

25 (49)

60 (47.2)

34 (44.7)

26 (51)

饮酒史,n (%)

1.281

0.258

70 (55.1)

45 (59.2)

25 (49)

57 (44.9)

31 (40.8)

26 (51)

冠心病,n (%)

2.239

0.135

96 (75.6)

61 (80.3)

35 (68.6)

31 (24.4)

15 (19.7)

16 (31.4)

糖尿病,n (%)

0.439

0.508

84 (66.1)

52 (68.4)

32 (62.7)

43 (33.9)

24 (31.6)

19 (37.3)

高血压,n (%)

3.111

0.078

79 (62.2)

52 (68.4)

27 (52.9)

48 (37.8)

24 (31.6)

24 (47.1)

慢性肾功能不全,n (%)

0.483

0.487

108 (85)

66 (86.8)

42 (82.4)

19 (15)

10 (13.2)

9 (17.6)

慢阻肺,n (%)

3.889

0.049

107 (84.3)

68 (89.5)

39 (76.5)

20 (15.7)

8 (10.5)

12 (23.5)

注:APACHE II评分为急性生理和慢性健康评分II;SOFA评分为序贯器官衰竭评估评分。

3.2. 对两组患者外周血相关指标及APACHE II评分进行比较

结果显示,死亡组外周血MPVLR、MPV明显高于生存组,而LYM却明显低于生存组,且差异均具有统计学意义(P < 0.05)。详见表2

Table 2. Comparison of peripheral blood data between the two groups M( Q1,Q3 )

2. 两组患者外周血数据比较 M( Q1,Q3 )

组别

总数(n = 127)

生存组(n = 76)

死亡组(n = 51)

X 2 /t /Z

P

MPVLR, [ M( Q1,Q3 ) ]

26.00 (19.00, 38.00)

20.00 (17.00, 27.25)

38.00 (32.50, 43.50)

−6.484

<0.001

MPV, [ M( Q1,Q3 ) ]

11.90 (9.65, 14.05)

10.30 (9.28, 12.62)

14.20 (11.60, 14.80)

−5.311

<0.001

LYM, [ M( Q1,Q3 ) ]

0.44 (0.35, 0.54)

0.52 (0.44, 0.57)

0.36 (0.32, 0.40)

6.080

<0.001

3.3. 脓毒症患者28 d死亡危险因素分析

单因素Logistic回归分析中P < 0.1的变量考虑为可能相关变量,将其再次纳入多因素Logistic回归分析进行矫正分析。最终得出结论:APACHE II评分、MPVLR是脓毒症患者28 d死亡的独立危险因素(P < 0.05)。详见表3

Table 3. Risk factors affecting 28d mortality in patients with sepsis

3. 影响脓毒症患者28d死亡的危险因素

组别

β

SE

z

OR

P

MPVLR

0.110

0.026

4.285

1.117 (1.064, 1.179)

<0.001

SOFA评分

0.171

0.107

1.592

1.186 (0.966, 1.479)

0.111

APACHE II评分

0.116

0.052

2.238

1.123 (1.017, 1.249)

0.025

年龄

0.030

0.021

1.438

1.031 (0.990, 1.076)

0.151

高血压

0.174

0.563

0.309

1.190 (0.390, 3.617)

0.757

慢阻肺

0.805

0.679

1.185

2.237 (0.607, 8.956)

0.236

3.4. 外周血MPVLR、APACHE II评分及二者联合预测脓毒症患者28 d死亡的ROC曲线分析

结果显示,MPVLR、APACHE II评分的ROC曲线下面积(AUC)分别为0.840、0.800,而MPVLR联合APACHE II评分的AUC为0.885,当最佳截断值为0.292时,敏感度为0.863,特异度为0.789,预测值最佳。详见图1表4

Figure 1. Receiver operating characteristic curve

1. ROC曲线

Table 4. Predictive value of relevant risk factors in the prognosis of sepsis

4. 相关危险因素对脓毒症预后的预测价值

组别

AUC

95%CI

最佳截断值

灵敏度(%)

特异度(%)

MPVLR

0.840

0.766~0.914

31.500

0.765

0.842

APACHE II评分

0.800

0.718~0.882

20.500

0.745

0.789

MPVLR联合APACHE II评分

0.885

0.824~0.946

0.292

0.863

0.789

4. 讨论

一项调查显示,2017年,全球记录了约4800万的脓毒症病例,并报告了1100万脓毒症相关死亡病例,占全球所有死亡人数的19.7% [13]。脓毒症俨然成为一种严重危害人类健康的疾病,脓毒症是一种综合征,常作为严重感染、烧伤、创伤等急危重症的并发症出现,一旦出现,病情发展迅速,预后往往不佳。尽管国际脓毒症生存运动指南已经发布了10年,但由于缺乏有效的生物标志物和新的治疗方法,脓毒症仍然是一种致命的综合征[14]。有研究显示,疾病的死亡率取决于疾病的背景和严重程度,脓毒症死亡率达30%,严重脓毒症高达50%,而脓毒症休克高达80% [15]。因此,早期识别脓毒症,及时干预疾病发展进程,对脓毒症患者的预后具有重要意义。APACHE II评分是评估患者急性生理与慢性健康的评分,是ICU常用评分表之一,反映了患者机体整体功能状态,可以帮助医护人员评估患者的病情及预后,APACHE II评分越高,患者机体功能及器官储备越差,对病原菌的免疫应答反应越弱,预后越差。APACHE II评分、SOFA评分、外周血炎症指标(如白细胞计数、淋巴细胞计数、C反应蛋白、降钙素原等)等是评估脓毒症病情严重程度及预后的常用指标[11] [16]-[19],但多项研究均证实[12] [16] [20],单一指标评价价值较低,而多项指标联合评估的价值往往较高。因此,本研究拟分析MPVLR联合APACHE II评分对脓毒症患者预后的评估价值。

本研究发现,死亡组的MPVLR、APACHE II评分均明显高于生存组(P < 0.05),提示了MPVLR、APACHE II评分可能与脓毒症患者的预后密切相关。既往有研究发现[11] [16] [20],APACHE II评分与脓毒症可以有效预测脓毒症患者的病情严重程度及预后,评分越高,死亡风险越大。MPVLR作为一种新型炎症指标,常被用于预测心脑血管病患者的预后[21],而本研究的ROC曲线显示,MPVLR及APACHE II评分的AUC分别为0.840、0.800,提示二者均可以较好地预测脓毒症患者预后。

随着研究的进展,脓毒症的病理生理被总结成三方面,即炎症反应失衡、免疫功能紊乱及凝血异常[4],血小板、淋巴细胞、中性粒细胞、吞噬细胞等多种细胞都参与其中,在免疫应答中发挥重要作用。而血小板除了参与机体的凝血作用,还与机体的炎症反应相关。血小板与内皮相互作用,调节血管完整性和屏障功能,介导炎症和免疫反应,并预防和阻止出血[22]。激活的血小板分泌和表达许多促炎和抗炎分子,如TNF-α、IL-1β、CD40L等,吸引和捕获循环白细胞,并将其引导到发炎组织[23],以此参与机体的免疫反应。所以,激活的血小板越多,提示机体的炎症反应越重、感染越重,患者的预后也更差。而血小板体积的平均值(MPV)是血小板大小、功能和激活的标记[24],因此被认为与脓毒症患者预后相关[25]。淋巴细胞是脓毒症免疫反应中的关键细胞之一。机体在脓毒症初期分泌大量炎性介质,若炎症反应未被及时控制,随后进入到免疫抑制阶段,此时,淋巴细胞大幅降低,免疫细胞功能紊乱进一步加重,脓毒症患者的死亡风险增加[26]。而MPVLR作为MPV与LYM的比值,综合反映了机体的炎症–免疫–凝血状态,推测可以较好地预测脓毒症患者的预后,本研究也证实,当MPVLR升高时,脓毒症患者的死亡风险增加。除此之外,本研究还显示,MPVLR联合APACHE II评分评估脓毒症患者预后的AUC为0.885,灵敏度与特异度分别为0.863、0.789,二者联合预测价值较单一指标更高。

综上所述,MPVLR、APACHE II评分均是脓毒症患者28d死亡的独立危险因素,也是评估脓毒症患者预后的良好指标,但二者联合时对脓毒症预后的预测价值更高。

声 明

本研究已通过重庆医科大学附属永川医院伦理委员会审核,病例报道均取得病人的知情同意。

基金项目

重庆市医学科研项目(重庆市卫生委员会和科技局联合项目,2020 FYYX006),重庆市永川区自然科学基金(2020nb00503)。

NOTES

*第一作者。

#通讯作者。

参考文献

[1] Singer, M., Deutschman, C.S., Seymour, C.W., Shankar-Hari, M., Annane, D., Bauer, M., et al. (2016) The Third International Consensus Definitions for Sepsis and Septic Shock (Sepsis-3). JAMA, 315, 801-810.
https://doi.org/10.1001/jama.2016.0287
[2] Gobatto, A.L.N., Besen, B.A.M.P. and Azevedo, L.C.P. (2017) How Can We Estimate Sepsis Incidence and Mortality? Shock, 47, 6-11.
https://doi.org/10.1097/shk.0000000000000703
[3] O’Brien, J.M., Ali, N.A., Aberegg, S.K. and Abraham, E. (2007) Sepsis. The American Journal of Medicine, 120, 1012-1022.
https://doi.org/10.1016/j.amjmed.2007.01.035
[4] 姚咏明, 张艳敏. 脓毒症发病机制最新认识[J]. 医学研究生学报, 2017, 30(7): 678-683.
[5] Jacobi, J. (2021) The Pathophysiology of Sepsis—2021 Update: Part 1, Immunology and Coagulopathy Leading to Endothelial Injury. American Journal of Health-System Pharmacy, 79, 329-337.
https://doi.org/10.1093/ajhp/zxab380
[6] 卫夏迪. 脓毒症早期淋巴细胞亚群和NLR的变化及其预后价值[D]: [硕士学位论文]. 太原: 山西医科大学, 2021.
[7] 孟杰杰, 刘东升, 李彬, 等. MPVLR、PDW对急性ST段抬高型心肌梗死病人PCI术后住院期间主要不良心血管事件的预测价值[J]. 中西医结合心脑血管病杂志, 2022, 20(16): 2988-2991.
[8] Ornek, E. and Kurtul, A. (2017) Relationship of Mean Platelet Volume to Lymphocyte Ratio and Coronary Collateral Circulation in Patients with Stable Angina Pectoris. Coronary Artery Disease, 28, 492-497.
https://doi.org/10.1097/mca.0000000000000530
[9] 李梦晨. T淋巴细胞亚群对脓毒症患者病情严重程度及预后的评估价值[D]: [硕士学位论文]. 乌鲁木齐: 新疆医科大学, 2023.
[10] Naved, S.A., Siddiqui, S. and Khan, F.H. (2011) APACHE-II Score Correlation with Mortality and Length of Stay in an Intensive Care Unit. Journal of College of Physicians and Surgeons Pakistan, 21, 4-8.
[11] Godinjak, A., Iglica, A., Rama, A., et al. (2016) Predictive Value of SAPS II and APACHE II Scoring Systems for Patient Outcome in a Medical Intensive Care Unit. Acta Medica Academica, 45, 97-103.
[12] Cao, Y., Yao, S., Shang, J., Ping, F., Tan, Q., Tian, Z., et al. (2022) The Combination of Lactate Level, Lactate Clearance and APACHE II Score Better Predicts Short-Term Outcomes in Critically Ill Patients: A Retrospective Cohort Study. BMC Anesthesiology, 22, Article No. 382.
https://doi.org/10.1186/s12871-022-01878-0
[13] Weng, L., Xu, Y., Yin, P., Wang, Y., Chen, Y., Liu, W., et al. (2023) National Incidence and Mortality of Hospitalized Sepsis in China. Critical Care, 27, Article No. 84.
https://doi.org/10.1186/s13054-023-04385-x
[14] Cheng, B., Hoeft, A.H., Book, M., Shu, Q. and Pastores, S.M. (2015) Sepsis: Pathogenesis, Biomarkers, and Treatment. BioMed Research International, 2015, Article ID: 846935.
https://doi.org/10.1155/2015/846935
[15] Jawad, I., Lukšić, I. and Rafnsson, S.B. (2012) Assessing Available Information on the Burden of Sepsis: Global Estimates of Incidence, Prevalence and Mortality. Journal of Global Health, 2, Article ID: 010404.
https://doi.org/10.7189/jogh.01.010404
[16] Deniz, M., Ozgun, P. and Ozdemir, E. (2022) Relationships between RDW, NLR, CAR, and APACHE II Scores in the Context of Predicting the Prognosis and Mortality in ICU Patients. European Review for Medical and Pharmacological Sciences, 26, 4258-4267.
[17] Beigmohammadi, M.T., Amoozadeh, L., Rezaei Motlagh, F., Rahimi, M., Maghsoudloo, M., Jafarnejad, B., et al. (2022) Mortality Predictive Value of APACHE II and SOFA Scores in COVID-19 Patients in the Intensive Care Unit. Canadian Respiratory Journal, 2022, Article ID: 5129314.
https://doi.org/10.1155/2022/5129314
[18] Morkar, D.N., Dwivedi, M. and Patil, P. (2022) Comparative Study of Sofa, Apache II, Saps II, as a Predictor of Mortality in Patients of Sepsis Admitted in Medical ICU. Journal of the Association of Physicians of India, 70, 11-12.
[19] Tekin, B., Kiliç, J., Taşkin, G., Solmaz, İ., Tezel, O. and Başgöz, B.B. (2024) Comparison of Scoring Systems: SOFA, APACHE-II, LODS, MODS, and SAPS-II in Critically Ill Elderly Sepsis Patients. The Journal of Infection in Developing Countries, 18, 122-130.
https://doi.org/10.3855/jidc.18526
[20] Czajka, S., Ziębińska, K., Marczenko, K., Posmyk, B., Szczepańska, A.J. and Krzych, Ł.J. (2020) Validation of APACHE II, APACHE III and SAPS II Scores in In-Hospital and One Year Mortality Prediction in a Mixed Intensive Care Unit in Poland: A Cohort Study. BMC Anesthesiology, 20, Article No. 296.
https://doi.org/10.1186/s12871-020-01203-7
[21] Kenan Tekin, Y. and Tekin, G. (2020) Mean Platelet Volume-to-Platelet Count Ratio, Mean Platelet Volume-to-Lymphocyte Ratio, and Red Blood Cell Distribution Width-Platelet Count Ratio as Markers of Inflammation in Patients with Ascending Thoracic Aortic Aneurysm. Brazilian Journal of Cardiovascular Surgery, 35, 175-180.
https://doi.org/10.21470/1678-9741-2019-0348
[22] Zheng, Y., Chen, J. and López, J.A. (2014) Microvascular Platforms for the Study of Platelet-Vessel Wall Interactions. Thrombosis Research, 133, 525-531.
https://doi.org/10.1016/j.thromres.2013.12.039
[23] Maouia, A., Rebetz, J., Kapur, R. and Semple, J.W. (2020) The Immune Nature of Platelets Revisited. Transfusion Medicine Reviews, 34, 209-220.
https://doi.org/10.1016/j.tmrv.2020.09.005
[24] Colkesen, Y. and Muderrisoglu, H. (2012) The Role of Mean Platelet Volume in Predicting Thrombotic Events. Clinical Chemistry and Laboratory Medicine, 50, 631-634.
https://doi.org/10.1515/cclm.2011.806
[25] Celegen, M., Kesici, S., Yavuz, S., Celegen, K. and Bayrakci, B. (2022) Are Platelet Indices Promising Ratios for Predicting Pediatric Septic Shock Prognosis? Bratislava Medical Journal, 123, 444-448.
https://doi.org/10.4149/bll_2022_069
[26] Hamers, L., Kox, M. and Pickkers, P. (2015) Sepsis-Induced Immunoparalysis: Mechanisms, Markers, and Treatment Options. Minerva Anestesiologica, 81, 426-439.