HER-2阳性乳腺癌的新辅助靶向药物应用现状
Application Status of Neoadjuvant Targeted Drugs for HER-2 Positive Breast Cancer
DOI: 10.12677/jcpm.2025.41064, PDF, HTML, XML,   
作者: 王琪瑶:济宁医学院临床医学院,山东 济宁;熊 斌*, 冯其贞, 张亚杰:济宁医学院附属医院乳腺外科,山东 济宁
关键词: 乳腺肿瘤HER-2阳性乳腺癌靶向药物Breast Cancer HER-2 Positive Breast Cancer Targeted Drug
摘要: 人表皮生长因子受体-2 (HER-2)阳性乳腺癌约占乳腺癌患者的20%~30%,同其他类型乳腺癌相比,其更易侵袭、复发时间更短、总体预后更差,且无瘤生存期及总生存期更短。乳腺癌新辅助化疗是指在手术治疗或放疗前进行化疗,以控制癌细胞扩散,抑制其增殖,使肿瘤降期和降级,目前在临床已得到广泛应用。随着针对HER-2基因过表达而研发的靶向药物出现,HER-2阳性乳腺癌患者的治疗得到了显著突破,尤其是此类药在新辅助治疗阶段的应用,已经被证实可以显著提高患者临床病理完全缓解(pCR)率,增加了患者的临床获益。随着研究的深入,越来越多新辅助阶段的药物被开发出来,这对改善患者预后具有积极的意义。本文就HER-2阳性乳腺癌患者新辅助阶段常用药物的应用作一综述。
Abstract: HER-2 positive breast cancer accounts for about 20%~30% of breast cancer patients. Compared with other types of breast cancer, HER-2 positive breast cancer is more likely to invade, has shorter recurrence time, worse overall prognosis, and shorter disease-free survival and overall survival. Neoadjuvant chemotherapy for breast cancer refers to chemotherapy before surgical treatment or radiotherapy to control the spread of cancer cells, inhibit their proliferation, and downstage and downgrade tumors. It has been widely used in clinical practice. With the emergence of targeted drugs developed for HER-2 gene overexpression, the treatment of HER-2 positive breast cancer patients has made a significant breakthrough, especially the application of such drugs in the neoadjuvant treatment stage, which has been proved to significantly improve the patient’s pCR rate and increase the clinical benefits of patients. With the deepening of research, more and more new adjuvant drugs have been developed, which is of positive significance for improving the prognosis of patients. This article reviews the application of commonly used drugs in the neoadjuvant stage of HER-2 positive breast cancer patients.
文章引用:王琪瑶, 熊斌, 冯其贞, 张亚杰. HER-2阳性乳腺癌的新辅助靶向药物应用现状[J]. 临床个性化医学, 2025, 4(1): 428-435. https://doi.org/10.12677/jcpm.2025.41064

1. 引言

乳腺癌作为一种具有不同亚型的多面性和高异质性的恶性肿瘤,已经发展为全球范围内的女性群体中最高发的癌症,是全世界女性死亡的第二大原因[1],其中人表皮生长因子受体-2 (HER-2)阳性乳腺癌占所有乳腺癌的15%~20% [2],其生物学特点表现为肿瘤侵袭性强、复发风险高、对传统化疗不敏感等[3]。HER-2是一种具有受体酪氨酸激酶活性的跨膜蛋白,与HER-3、HER-4及EGFR共属于HER家族,具有抑制细胞凋亡、促进细胞增殖、增强肿瘤细胞侵袭力及刺激肿瘤血管新生等生物学作用[4],是目前已知的一种重要的原癌基因。HER-2阳性乳腺癌细胞内均呈现明显的HER-2高表达,且随着HER-2表达水平的升高会进一步刺激癌细胞增长,增加其侵袭性,因此导致癌症的转移和复发较快。由于HER-2阳性乳腺癌有着对传统化疗不敏感的生物学特点,对于局部晚期的HER-2阳性乳腺癌,国内、外指南均推荐新辅助化疗联合靶向治疗。HER-2阳性局部晚期的乳腺癌不仅能够从新辅助治疗中明显受益,而且通过新辅助治疗达到病理完全缓解(Pathological Complete Response, pCR)的患者无进展生存期(Disease-Free Survival, DFS)和总生存期(Overall Survival, OS)更长[5] [6]。近年来,随着对HER-2阳性乳腺癌的生物学特征及其相关信号通路研究的深入,越来越多新辅助阶段的药物被开发及应用,这对改善患者预后具有积极的意义。因此,本文对HER-2阳性乳腺癌患者新辅助阶段常用药物的应用作一综述。

2. 新辅助治疗在HER-2阳性乳腺癌中的作用

乳腺癌新辅助治疗是指在手术前进行的全身药物治疗,适用于肿块较大、腋窝淋巴结转移、HER-2阳性或三阴性、有保乳意愿但肿瘤大小与乳房体积比例较大难以保乳者。近年来,在早期及局部晚期乳腺癌的治疗中,新辅助化疗已经成为其重要的治疗手段,通过新辅助化疗,不仅能够缩小肿瘤体积、降低手术创伤、增加保乳机会,而且能使得原本由于皮瓣供给、肿瘤局部感染等原因不能手术的乳腺癌患者重新获得手术切除的机会,还能有效降低肿瘤细胞活性、消除随血液循环播散的肿瘤细胞,还可以为我们提供肿瘤在治疗中对药物的反应信息,在为患者的后续治疗提供药物敏感性依据方面发挥着重要作用[7]。在I-SPY2的3年随访研究中,新辅助治疗后,pCR患者3年无事件生存(Event-Free Survival, EFS)明显高于没有获得pCR (non-pCR)的患者(95% vs. 78%) [8]。在TRYPHAENA的研究中也证实了DFS和pCR之间的相关性[9]。HER-2阳性乳腺癌患者通过合理的新辅助治疗能大幅度提高pCR率,提高了保乳率及保腋率,对其远期生存具有很好的预示意义。

3. HER-2阳性乳腺癌新辅助治疗的常用药物

HER-2高表达的生物学行为及临床特点与其他乳腺癌类型不同,因此其治疗方式也和其他类型乳腺癌截然不同。抗HER-2靶向治疗为HER-2阳性乳腺癌患者的基础药物治疗,已成为临床治疗HER-2阳性乳腺癌的基础方案。靶向治疗是利用分子靶向药物针对乳腺癌细胞上的特定靶点进行精确抑制,阻断乳腺癌细胞的信号转单,从而高效、选择性地对乳腺癌细胞实施“精准打击”。目前获批上市的靶向药物越来越多,除了曲妥珠单抗(Trastuzumab)这一具有跨时代意义的药物,还有帕妥珠单抗(Pertuzumab)、拉帕替尼(Lapatinib)、吡咯替尼(Pyrotinib)、曲妥珠单抗–美坦辛偶联物(Trastuzumab Emtansine, T-DMl)等抗HER-2治疗的新型靶向药,这在很大程度地拓宽了HER-2阳性乳腺癌患者的治疗空间,而合理的使用才可以让患者更好地获益。

3.1. 大分子单克隆抗体

大分子单克隆抗体类靶向药物中最具有代表性的就是曲妥珠单抗,其在1998年被美国食品药品监督管理局(Food and Drug Administration, FDA)批准作为第一个靶向HER-2治疗的抗体药物,开启了乳腺癌精准靶向治疗的时代,其作用机制是通过结合HER-2受体的细胞外结构域(Extracellular Domain, ECD) IV区来阻断下游信号通路的传导,阻止配体依赖的HER-2受体二聚体的形成,还包括通过启动抗体依赖的细胞介导的细胞毒性作用(Antibody-Dependent Cellular Cytotoxicity, ADCC)作用汇聚免疫细胞攻击肿瘤细胞,促进肿瘤细胞凋亡从而发挥抗癌活性[10] [11]。NOAH研究[12]显示在新辅助化疗的基础上加用曲妥珠单抗,使HER-2阳性乳腺癌的pCR率从19%提高到38%,5年复发风险下降36%,提示对于HER-2阳性乳腺癌,联合曲妥珠单抗不仅可以显著提高pCR率,同时能改善患者的远期预后。

帕妥珠单抗是第2个以HER-2为靶点的单克隆抗体,是鼠抗HER-2抗体2C4的一种“HER-2异源二聚化抑制剂”——重组人源化单克隆抗体。于2012年被FDA批准用于HER-2阳性转移性乳腺癌,其通过与HER-2分子的细胞外结构域Ⅱ相结合阻止与其它HER受体(HER-1、HER-3和HER-4)异二聚化,发挥抑癌相关的下游信号传导作用。学者们发现,曲妥珠单抗与帕妥珠单抗作用方式互补,通过抑制同源二聚体、异源二聚体的形成,可以从源头阻断HER-2下游信号传导,弥补了曲妥珠单抗对于HER受体家族的不完全抑制,此外,二者的ADCC效应可以叠加,作用优于任一单药,实现疗效增益[13]。5年随访的NeoSphere研究[14]发现,抗HER-2双靶向治疗(曲妥珠 + 帕妥珠单抗)更易使pCR患者获得长期生存,获得总体pCR的HER-2阳性乳腺癌患者其DFS长于non-pCR的患者。PEONYⅢ期临床试验[15]进一步证实了曲妥珠单抗联合帕妥珠单抗的新辅助治疗方案可以提高HER-2阳性患者的pCR率,并改善远期预后。后续的TRAIN-2研究[16] [17]和KRISTINE研究[18] [19]证明TCbHP (紫衫类 + 卡铂 + 曲妥珠单抗 + 帕妥珠单抗)方案在新辅助治疗中的有效性及安全性,因此TCbHP方案在更多指南中被作为HER-2阳性乳腺癌新辅助治疗的首选推荐,并在临床实践中广泛应用。

值得关注的是,曲妥珠单抗皮下制剂已于2022年10月被我国批准用于治疗HER-2阳性早期和转移性乳腺癌,次年12月,曲妥珠单抗与帕妥珠单抗二合一的皮下制剂也被获批,皮下注射作为抗肿瘤药物的一种重要的给药途径,与静脉给药相比,能减少药物准备、输注和观察时间,侵入性更小、更为便捷,改善患者用药可及性和依从性,降低医疗成本[20] [21],上述两款获批的皮下制剂,可实现固定剂量,无需进行剂量计算和配置,大大降低剂量错误的风险。BO22227 (HannaH)试验(Ⅲ期)研究[22]比较了曲妥珠单抗皮下注射联合化疗对比其静脉注射联合化疗应用于HER2阳性乳腺癌新辅助或辅助治疗中的疗效,结果提示皮下制剂和静脉制剂曲妥珠单抗的3年EFS发生率分别为76%和73% (HR = 0.95, 95% CI 0.69~1.30),皮下制剂组3年总生存期为92%,静脉制剂组为90% (HR = 0.76, 95% CI 0.44~1.32),安全性相似。SafeHER研究评估了HER-2阳性早期乳腺癌患者使用皮下制剂曲妥珠单抗联合化疗的安全性和耐受性,结果表明,与静脉制剂相比,皮下制剂并未增加不良反应发生率[23]。FDChina研究[24]是一项是在中国早期乳腺癌患者人群中开展的Ⅲ期研究,旨在评估与曲帕双靶静脉注射(P + H IV)相比,曲帕双靶皮下制剂(Pertuzumab Trastuzumab Fixed Dose Combination Subcutaneous Injection-PH FDC SC)联合化疗的药代动力学、疗效和安全性,该研究证实了PH FDC SC与曲帕双靶静脉注射在中国乳腺癌患者的疗效非劣效性和类似的安全性,相较于P + H IV,PH FDC SC可作为中国乳腺癌患者输注更快速,更便利,侵入性更小的治疗选择。专家组认为,此两种皮下制剂可在任意治疗阶段替代单靶或双靶静脉注射。

3.2. 酪氨酸激酶抑制剂

近20年来,酪氨酸激酶抑制剂(Tyrosine Kinase Inhibitors, TKI)逐渐进入了化疗领域视野,其作为抗HER-2治疗的一种小分子靶向药物,与大分子单克隆抗体类靶向药物相比主要体现在作用机制不同。TKI主要是通过与细胞内三磷酸腺苷(ATP)同源结构竞争性结合表皮生长因子受体(EGFR)家族的结合域,来阻断HER-2下游信号的传导,抑制磷酸化,以抑制癌细胞的增殖并促进细胞凋亡[25]因此,相较于单克隆抗体,TKI可能具有一定的临床优势,并且将TKI与单克隆抗体类靶向药物联合使用治疗HER-2阳性乳腺癌,可以认为是一种有效的细胞外和细胞内EGFR结构域双重抑制策略。现已有多项研究证实,因单克隆抗体药物无法通过血脑屏障,而小分子TKI类药物能成功通过血脑屏障,因此相比大分子单克隆抗体,TKI类药物在HER-2阳性晚期乳腺癌尤其是脑转移患者中,疗效更显著[26]-[30]。目前被美国食品药品管理局批准用于HER-2阳性乳腺癌治疗的TKI包括拉帕替尼(Lapatinib)、来那替尼(Neratinib)、图卡替尼(Tucatinib)等。

吡咯替尼(Pyrotinib)作为国内自主研发的小分子TKI,在2018年被中国食品药品监督管理局批准用于HER-2阳性晚期乳腺癌的治疗,同样在HER-2晚期乳腺癌领域取得了良好的疗效。新辅助治疗阶段,一项II期临床试验显示[31],接受新辅助吡咯替尼联合表柔比星加环磷酰胺序贯多西他赛和曲妥珠单抗19例患者的tpCR率为73.7% (95% CI, 48.8~90.9)且不良反应可耐受。单臂、II期单中心临床研究发现[32],以吡咯替尼和曲妥珠单抗双靶为基础新辅助方案的pCR率为69.81%~73.7%,一项入组545例患者的回顾性研究[33]发现新辅助治疗局部晚期HER-2阳性乳腺癌方案中,吡咯替尼联合多西他赛加卡铂及曲妥珠单抗方案的pCR率显著优于多西他赛加卡铂及曲妥珠单抗(TCbH)方案且与多西他赛加卡铂及曲妥珠单抗、帕妥珠单抗(TCbHP)方案相当。由复旦大学附属肿瘤医院吴炅教授牵头开展的多中心Ⅲ期PHEDRA研究[34]在曲妥珠单抗和多西他赛基础上对比联合吡咯替尼或安慰剂的疗效,实验组的总体病理完全缓解(tpCR)率高于对照组(41% vs.22%),优效性检验显示两组间的差异有统计学意义,同时乳腺病理完全缓解(bpCR)率(43.8% vs.22.0%)和ORR (91.6% vs. 81.9%)也取得显著的改善,证实了吡咯替尼 + 曲妥珠单抗 + 多西他赛在新辅助治疗的有效性及安全性。据此,我国国家药品监督管理局于2022年6月正式批准吡咯替尼与曲妥珠单抗和多西他赛联合用于HER-2阳性乳腺癌患者的新辅助治疗。从这些临床研究我们可以看出,国产原研药吡咯替尼在新辅助治疗方面也体现出良好的应用前景,激励我们继续用更大的样本量去证实。

3.3. 抗体与化疗偶联物(ADC)

抗体偶联药物(Antibody Drug Conjugate, ADC)是一类治疗乳腺癌的新型靶向药物,由连接子将化疗药物同单克隆抗体抗偶联而成,此类药物以单抗为载体,可将小分子细胞毒性药物靶向、高效地运输至目标肿瘤细胞内而发挥抗肿瘤的作用[35]。根据ADC作用于不同靶点的抗原,分为靶向人表皮生长因子受体2 (HER-2)、人滋养细胞表面抗原2 (Trop-2)及其他分子等类型。目前,全球范围内已有3种ADC获批治疗乳腺癌,除用于HER-2阳性乳腺癌的恩美曲妥珠单抗(Trastuzumab Emtansine, T-DM1)、德曲妥珠单抗(Trastuzumab Deruxtecan, T-DXd)外,还有可使三阴性乳腺癌(Triple-Negative Breast Cancer, TNBC)获益的戈沙妥珠单抗(SG)。美国食品药品监督管理局(Food and Drug Administration, FDA)于2013年批准T-DM1用于既往接受过紫杉类和曲妥珠单抗治疗的HER-2阳性晚期乳腺癌的治疗,是最早被研发的抗HER-2的ADC,也是首个在中国上市针对乳腺癌的ADC[36]。Ⅲ期试验KRISTINE研究[18]率先提出设想,T-DM1能否取代化疗在早期乳腺癌新辅助治疗领域发挥作用,治疗组和对照组分别应用T-DM1 + 帕妥珠单抗对比多西他赛 + 卡铂 + 曲妥珠单抗 + 帕妥珠单抗(TCbHP),结果发现,传统化疗联合抗HER-2双靶治疗虽然达到了更高的pCR率(55.7% vs 44.4%),但在新辅助治疗期间,两组的3~4级不良事件发生率分别为64%和13%,两组的严重不良事件发生率分别为29%和5%。考虑到化疗存在着严重的不良反应,而T-DM1的不良反应明显更小。Ⅱ期试验ADAPT研究[37]探索了T-DM1 ± 内分泌治疗新辅助治疗早期乳腺癌的疗效及安全性,研究结果发现:375例早期乳腺癌患者在分别经过12周的T-DM1单药、T-DM1 + 内分泌治疗及曲妥珠单抗 + 内分泌治疗后,41%的患者达到了pCR,且pCR率与是否应用内分泌治疗无关,T-DM1比曲妥珠单抗具有显著优势(41% vs 15.1%),且不良反应发生率较低。KATHERINE研究是一项针对HER-2阳性乳腺癌新辅助治疗后仍有残留病灶并进行强化辅助化疗的临床试验,2019年ESMO亚洲年会公布了KATHERINE研究中国人群的数据[38],共计入组101例,其中T-DM1组51例,曲妥珠单抗组50例。T-DM1组与曲妥珠单抗组相比,提高了13.4%的3年无侵袭性疾病生存率(Invasive Disease-Free Survival, iDFS),T-DM1组疾病复发或死亡风险较曲妥珠单抗组降低了43% (HR = 0.57, 95% CI: 0.25~1.31),与全球受试者人群的获益类似。T-DM1耐药仍然是限制药物应用的主要原因,临床上也在做多种尝试为T-DM1耐药患者提供新的治疗选择。

  • DXd是继T-DM1后的新一代ADC类药物,由曲妥珠单抗与有效载荷拓扑异构酶I抑制剂通过可裂解连接子构成,其药物抗体比高达8:1,具有毒性低、复发率低、疗效好、安全性可靠等特点[39]。该药也被认为是对T-DM1不太敏感的HER-2低表达肿瘤的合适治疗方案。有研究显示,在曲妥珠单抗治疗失败后,T-Dxd较T-DM1更能显著改善患者的DFS,疾病进展或死亡风险比降低了72% [40],与T-DM1相比,T-DXd有更高的药物膜渗透性,能够释放到细胞间隙,可以发挥旁观者效应,有望进一步改变乳腺癌靶向治疗格局,为HER-2阳性乳腺癌患者带来新的治疗选择。SHAMROCK研究[41]是一项开放标签、单臂、多中心的II期临床试验,评估了T-DXd在早期HER-2阳性乳腺癌新辅助治疗中的有效性及安全性,证实了T-DXd作为一种新型ADC在HER-2阳性乳腺癌治疗中的潜力,同时也为减少化疗的使用提供了有力的证据支持。正在进行的DESTINY-Breast11研究[42]旨在评估新辅助T-DXd单药治疗或T-DXd后序贯THP对比剂量密集型多柔比星和环磷酰胺序贯THP方案(ddAC-THP)的疗效及安全性,主要终点为pCR,期待此研究取得阳性结果,推动T-DXd在更早起/前线的使用,进一步改变乳腺癌的治疗模式。

ADC通过其独特的结构设计,实现对肿瘤的精准靶向和高效杀伤能力,显著提高乳腺癌患者的生存获益。但随着ADC的广泛应用,显露出的ADC耐药性意味着出现更严峻的挑战。很多研究证明T-DM1的转运及代谢异常和赖氨酸-MCC-DM1介导的细胞毒性受损是T-DM1耐药的主要机制,而第二代ADC药物的研发及上市为T-DM1耐药的患者提供了新的治疗选择。为逆转ADC耐药,ADC本身组件的优化以及联合用药方案是当下ADC开发的关注重点。此外,选择适合的药物成分使游离有效载荷在溶酶体中降解后不会成为多药转运体的底物以及调节药物连接体结构,通过增加连接体的亲水性来降低药物的整体疏水性也是克服多耐药的可行策略[43]。ADC打破了传统乳腺癌分型的局限性,需要开发新的生物标志物(如循环肿瘤标志物、靶点或载荷相关基因突变)以识别可能受益于特定ADC的患者人群,实现精准医疗,进一步提高药物的临床响应率和疗效。

4. 小结与展望

抗HER-2靶向药物是HER-2阳性乳腺癌患者的重要治疗手段,得益于抗HER-2靶向药物的发展,极大地改善了HER-2阳性乳腺癌的预后,显著提高了早期患者的治愈率和延长晚期患者的生存。但靶向治疗的原发或继发耐药仍然是令人困扰的问题,如何利用小分子TKI、单克隆抗体、新型ADC药物等更有效地抑制HER-2信号传导通路是目前研究的热点。未来也期待更多药物及其循证证据,为HER-2阳性乳腺癌的精准诊疗提供解决方案,为我国乳腺癌患者带来更多的临床获益!

NOTES

*通讯作者。

参考文献

[1] Ye, F., Dewanjee, S., Li, Y., Jha, N.K., Chen, Z., Kumar, A., et al. (2023) Advancements in Clinical Aspects of Targeted Therapy and Immunotherapy in Breast Cancer. Molecular Cancer, 22, Article No. 105.
https://doi.org/10.1186/s12943-023-01805-y
[2] Tarantino, P., Hamilton, E., Tolaney, S.M., Cortes, J., Morganti, S., Ferraro, E., et al. (2020) HER2-Low Breast Cancer: Pathological and Clinical Landscape. Journal of Clinical Oncology, 38, 1951-1962.
https://doi.org/10.1200/jco.19.02488
[3] Kreutzfeldt, J., Rozeboom, B., Dey, N. and De, P. (2020) The Trastuzumab Era: Current and Upcoming Targeted HER2+ Breast Cancer Therapies. American Journal of Cancer Research, 10, 1045-1067.
[4] 李依敏, 苏思贞, 朱静, 等. 乳腺癌靶向治疗药物治疗研究进展[J]. 山东医药, 2017, 57(9): 107-109.
[5] Cortazar, P., Zhang, L., Untch, M., Mehta, K., Costantino, J.P., Wolmark, N., et al. (2014) Pathological Complete Response and Long-Term Clinical Benefit in Breast Cancer: The CTNeoBC Pooled Analysis. The Lancet, 384, 164-172.
https://doi.org/10.1016/s0140-6736(13)62422-8
[6] Haque, W., Verma, V., Hatch, S., Suzanne Klimberg, V., Brian Butler, E. and Teh, B.S. (2018) Response Rates and Pathologic Complete Response by Breast Cancer Molecular Subtype Following Neoadjuvant Chemotherapy. Breast Cancer Research and Treatment, 170, 559-567.
https://doi.org/10.1007/s10549-018-4801-3
[7] Korde, L.A., Somerfield, M.R., Carey, L.A., Crews, J.R., Denduluri, N., Hwang, E.S., et al. (2021) Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. Journal of Clinical Oncology, 39, 1485-1505.
https://doi.org/10.1200/jco.20.03399
[8] Yee, D., DeMichele, A.M., Yau, C., Isaacs, C., Symmans, W.F., Albain, K.S., et al. (2020) Association of Event-Free and Distant Recurrence-Free Survival with Individual-Level Pathologic Complete Response in Neoadjuvant Treatment of Stages 2 and 3 Breast Cancer: Three-Year Follow-Up Analysis for the I-SPY2 Adaptively Randomized Clinical Trial. JAMA Oncology, 6, 1355-1362.
https://doi.org/10.1001/jamaoncol.2020.2535
[9] Schneeweiss, A., Chia, S., Hickish, T., Harvey, V., Eniu, A., Waldron-Lynch, M., et al. (2018) Long-Term Efficacy Analysis of the Randomised, Phase II TRYPHAENA Cardiac Safety Study: Evaluating Pertuzumab and Trastuzumab Plus Standard Neoadjuvant Anthracycline-Containing and Anthracycline-Free Chemotherapy Regimens in Patients with HER2-Positive Early Breast Cancer. European Journal of Cancer, 89, 27-35.
https://doi.org/10.1016/j.ejca.2017.10.021
[10] Pinto, A.C., Ades, F., de Azambuja, E. and Piccart-Gebhart, M. (2013) Trastuzumab for Patients with HER2 Positive Breast Cancer: Delivery, Duration and Combination Therapies. The Breast, 22, S152-S155.
https://doi.org/10.1016/j.breast.2013.07.029
[11] Kunte, S., Abraham, J. and Montero, A.J. (2020) Novel HER2-Targeted Therapies for HER2-Positive Metastatic Breast Cancer. Cancer, 126, 4278-4288.
https://doi.org/10.1002/cncr.33102
[12] Gianni, L., Eiermann, W., Semiglazov, V., Lluch, A., Tjulandin, S., Zambetti, M., et al. (2014) Neoadjuvant and Adjuvant Trastuzumab in Patients with HER2-Positive Locally Advanced Breast Cancer (NOAH): Follow-Up of a Randomised Controlled Superiority Trial with a Parallel HER2-Negative Cohort. The Lancet Oncology, 15, 640-647.
https://doi.org/10.1016/s1470-2045(14)70080-4
[13] Nader-Marta, G., Martins-Branco, D. and de Azambuja, E. (2022) How We Treat Patients with Metastatic HER2-Positive Breast Cancer. ESMO Open, 7, Article ID: 100343.
https://doi.org/10.1016/j.esmoop.2021.100343
[14] Gianni, L., Pienkowski, T., Im, Y., Tseng, L., Liu, M., Lluch, A., et al. (2016) 5-Year Analysis of Neoadjuvant Pertuzumab and Trastuzumab in Patients with Locally Advanced, Inflammatory, or Early-Stage HER2-Positive Breast Cancer (NeoSphere): A Multicentre, Open-Label, Phase 2 Randomised Trial. The Lancet Oncology, 17, 791-800.
https://doi.org/10.1016/s1470-2045(16)00163-7
[15] Shao, Z., Pang, D., Yang, H., Li, W., Wang, S., Cui, S., et al. (2020) Efficacy, Safety, and Tolerability of Pertuzumab, Trastuzumab, and Docetaxel for Patients with Early or Locally Advanced ERBB2-Positive Breast Cancer in Asia. JAMA Oncology, 6, e193692.
https://doi.org/10.1001/jamaoncol.2019.3692
[16] van Ramshorst, M.S., van der Voort, A., van Werkhoven, E.D., Mandjes, I.A., Kemper, I., Dezentjé, V.O., et al. (2018) Neoadjuvant Chemotherapy with or without Anthracyclines in the Presence of Dual HER2 Blockade for HER2-Positive Breast Cancer (TRAIN-2): A Multicentre, Open-Label, Randomised, Phase 3 Trial. The Lancet Oncology, 19, 1630-1640.
https://doi.org/10.1016/s1470-2045(18)30570-9
[17] van der Voort, A., van Ramshorst, M.S., van Werkhoven, E.D., Mandjes, I.A., Kemper, I., Vulink, A.J., et al. (2021) Three-year Follow-Up of Neoadjuvant Chemotherapy with or without Anthracyclines in the Presence of Dual ERBB2 Blockade in Patients with ERBB2-Positive Breast Cancer: A Secondary Analysis of the TRAIN-2 Randomized, Phase 3 Trial. JAMA Oncology, 7, 978-984. Https://doi.org/10.1001/jamaoncol.2021.1371
[18] Hurvitz, S.A., Martin, M., Symmans, W.F., Jung, K.H., Huang, C., Thompson, A.M., et al. (2018) Neoadjuvant Trastuzumab, Pertuzumab, and Chemotherapy versus Trastuzumab Emtansine Plus Pertuzumab in Patients with HER2-Positive Breast Cancer (KRISTINE): A Randomised, Open-Label, Multicentre, Phase 3 Trial. The Lancet Oncology, 19, 115-126.
https://doi.org/10.1016/s1470-2045(17)30716-7
[19] Hurvitz, S.A., Martin, M., Jung, K.H., Huang, C., Harbeck, N., Valero, V., et al. (2019) Neoadjuvant Trastuzumab Emtansine and Pertuzumab in Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: Three-Year Outcomes from the Phase III KRISTINE Study. Journal of Clinical Oncology, 37, 2206-2216.
https://doi.org/10.1200/jco.19.00882
[20] Bittner, B., Richter, W. and Schmidt, J. (2018) Subcutaneous Administration of Biotherapeutics: An Overview of Current Challenges and Opportunities. BioDrugs, 32, 425-440.
https://doi.org/10.1007/s40259-018-0295-0
[21] 《抗肿瘤药物创新皮下制剂临床应用的药事服务专家共识》编写组, 张玉. 抗肿瘤药物创新皮下制剂临床应用的药事服务专家共识[J]. 中国医院药学杂志, 2024, 44(14): 1603-1612, 1619.
[22] Jackisch, C., Hegg, R., Stroyakovskiy, D., Ahn, J., Melichar, B., Chen, S., et al. (2016) HannaH Phase III Randomised Study: Association of Total Pathological Complete Response with Event-Free Survival in HER2-Positive Early Breast Cancer Treated with Neoadjuvant-Adjuvant Trastuzumab after 2 Years of Treatment-Free Follow-Up. European Journal of Cancer, 62, 62-75.
https://doi.org/10.1016/j.ejca.2016.03.087
[23] Gligorov, J., Pivot, X., Ataseven, B., De Laurentiis, M., Jung, K.H., Manikhas, A., et al. (2022) Safety and Efficacy of Adjuvant Subcutaneous Trastuzumab in Human Epidermal Growth Factor Receptor 2-Positive Early Breast Cancer: Final Results of the SafeHER Study. The Breast, 64, 151-158.
https://doi.org/10.1016/j.breast.2022.03.001
[24] Shao, Z., Huang, T., Fan, Z., Wang, Y., Yan, X., Yang, H., et al. (2022) 1MO the Fixed-Dose Combination of Pertuzumab and Trastuzumab for Subcutaneous Injection (PH FDC SC) in Chinese Patients (PTS) with HER2-Positive Early Breast Cancer (EBC): Primary Analysis of the Phase III, Randomised Fdchina Study. Annals of Oncology, 33, S1431.
https://doi.org/10.1016/j.annonc.2022.10.008
[25] Roy, V. and Perez, E.A. (2009) Beyond Trastuzumab: Small Molecule Tyrosine Kinase Inhibitors in HER-2-Positive Breast Cancer. The Oncologist, 14, 1061-1069.
https://doi.org/10.1634/theoncologist.2009-0142
[26] Murthy, R.K., Loi, S., Okines, A., Paplomata, E., Hamilton, E., Hurvitz, S.A., et al. (2020) Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. New England Journal of Medicine, 382, 597-609.
https://doi.org/10.1056/nejmoa1914609
[27] Baselga, J., Bradbury, I., Eidtmann, H., Di Cosimo, S., de Azambuja, E., Aura, C., et al. (2012) Lapatinib with Trastuzumab for HER2-Positive Early Breast Cancer (Ne-oALTTO): A Randomised, Open-Label, Multicentre, Phase 3 Trial. The Lancet, 379, 633-640.
https://doi.org/10.1016/s0140-6736(11)61847-3
[28] Sirhan, Z., Thyagarajan, A. and Sahu, R.P. (2022) The Efficacy of Tucatinib-Based Therapeutic Approaches for HER2-Positive Breast Cancer. Military Medical Research, 9, Article No. 39.
https://doi.org/10.1186/s40779-022-00401-3
[29] Awada, A., Colomer, R., Inoue, K., Bondarenko, I., Badwe, R.A., Demetriou, G., et al. (2016) Neratinib Plus Paclitaxel vs Trastuzumab Plus Paclitaxel in Previously Untreated Metastatic ERBB2-Positive Breast Cancer: The NEfERT-T Randomized Clinical Tril. JAMA Oncology, 2, 1557-1564.
https://doi.org/10.1001/jamaoncol.2016.0237
[30] Gelmon, K.A., Boyle, F.M., Kaufman, B., Huntsman, D.G., Manikhas, A., Di Leo, A., et al. (2015) Lapatinib or Trastuzumab Plus Taxane Therapy for Human Epidermal Growth Factor Receptor 2-Positive Advanced Breast Cancer: Final Results of NCIC CTG MA.31. Journal of Clinical Oncology, 33, 1574-1583.
https://doi.org/10.1200/jco.2014.56.9590
[31] Xuhong, J., Qi, X., Tang, P., Fan, L., Chen, L., Zhang, F., et al. (2020) Neoadjuvant Pyrotinib Plus Trastuzumab and Chemotherapy for Stage I-III Her2-Positive Breast Cancer: A Phase II Clinical Trial. The Oncologist, 25, e1909-e1920.
https://doi.org/10.1002/onco.13546
[32] Yin, W., Wang, Y., Wu, Z., Ye, Y., Zhou, L., Xu, S., et al. (2022) Neoadjuvant Trastuzumab and Pyrotinib for Locally Advanced HER2-Positive Breast Cancer (NeoATP): Primary Analysis of a Phase II Study. Clinical Cancer Research, 28, 3677-3685.
https://doi.org/10.1158/1078-0432.ccr-22-0446
[33] Zhu, J., Jiao, D., Wang, C., Lu, Z., Chen, X., Li, L., et al. (2022) Neoadjuvant Efficacy of Three Targeted Therapy Strategies for HER2-Positive Breast Cancer Based on the Same Chemotherapy Regimen. Cancers, 14, Article 4508.
https://doi.org/10.3390/cancers14184508
[34] Wu, J., Jiang, Z., Liu, Z., Yang, B., Yang, H., Tang, J., et al. (2022) Neoadjuvant Pyrotinib, Trastuzumab, and Docetaxel for HER2-Positive Breast Cancer (PHEDRA): A Double-Blind, Randomized Phase 3 Trial. BMC Medicine, 20, Article No. 498.
https://doi.org/10.1186/s12916-022-02708-3
[35] Tsuchikama, K. and An, Z. (2016) Antibody-Drug Conjugates: Recent Advances in Conjugation and Linker Chemistries. Protein & Cell, 9, 33-46.
https://doi.org/10.1007/s13238-016-0323-0
[36] Verma, S., Miles, D., Gianni, L., Krop, I.E., Welslau, M., Baselga, J., et al. (2012) Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. New England Journal of Medicine, 367, 1783-1791.
https://doi.org/10.1056/nejmoa1209124
[37] Harbeck, N., Gluz, O., Christgen, M., Kates, R.E., Braun, M., Küemmel, S., et al. (2017) De-Escalation Strategies in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Early Breast Cancer (BC): Final Analysis of the West German Study Group Adjuvant Dynamic Marker-Adjusted Personalized Therapy Trial Optimizing Risk Assessment and Therapy Response Prediction in Early BC HER2-and Hormone Receptor-Positive Phase II Randomized Trial—Efficacy, Safety, and Predictive Markers for 12 Weeks of Neoadjuvant Trastuzumab Emtansine with or without Endocrine Therapy (ET) versus Trastuzumab Plus ET. Journal of Clinical Oncology, 35, 3046-3054.
https://doi.org/10.1200/jco.2016.71.9815
[38] Huang, C., Yang, Y., Kwong, A., Chen, S., Tseng, L., Liu, M., et al. (2021) Trastuzumab Emtansine (T-DM1) versus Trastuzumab in Chinese Patients with Residual Invasive Disease after Neoadjuvant Chemotherapy and HER2-Targeted Therapy for HER2-Positive Breast Cancer in the Phase 3 KATHERINE Study. Breast Cancer Research and Treatment, 187, 759-768.
https://doi.org/10.1007/s10549-021-06166-y
[39] Xu, Z., Guo, D., Jiang, Z., Tong, R., Jiang, P., Bai, L., et al. (2019) Novel HER2-Targeting Antibody-Drug Conjugates of Trastuzumab Beyond T-DM1 in Breast Cancer: Trastuzumab Deruxtecan(DS-8201a) and (Vic-)trastuzumab Duocarmazine (SYD985). European Journal of Medicinal Chemistry, 183, Article ID: 111682.
https://doi.org/10.1016/j.ejmech.2019.111682
[40] Cortés, J., Kim, S., Chung, W., Im, S., Park, Y.H., Hegg, R., et al. (2022) Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. New England Journal of Medicine, 386, 1143-1154.
https://doi.org/10.1056/nejmoa2115022
[41] Dowling, G.P., Toomey, S., Bredin, P., Parker, I., Mulroe, E., Marron, J., et al. (2024) Neoadjuvant Trastuzumab Deruxtecan (T-DXd) with Response-Directed Definitive Therapy in Early Stage HER2-Positive Breast Cancer: A Phase II Study Protocol (SHAMROCK Study). BMC Cancer, 24, Article No. 91.
https://doi.org/10.1186/s12885-024-11851-4
[42] Harbeck, N., Boileau, J., Modi, S., Kelly, C.M., Ohno, S., Wu, J., et al. (2022) Abstract OT1-12-04: A Phase 3, Open-Label Trial of Neoadjuvant Trastuzumab Deruxtecan (T-DXd) Monotherapy or T-DXd Followed by THP Compared with ddAC-THP in Patients with High-Risk HER2-Positive Early-Stage Breast Cancer (DESTINY-Breast11). Cancer Research, 82, OT1-12-04.
https://doi.org/10.1158/1538-7445.sabcs21-ot1-12-04
[43] Weng, W., Meng, T., Zhao, Q., Shen, Y., Fu, G., Shi, J., et al. (2023) Antibody-Exatecan Conjugates with a Novel Self-Immolative Moiety Overcome Resistance in Colon and Lung Cancer. Cancer Discovery, 13, 950-973.
https://doi.org/10.1158/2159-8290.cd-22-1368