[1]
|
Ye, F., Dewanjee, S., Li, Y., Jha, N.K., Chen, Z., Kumar, A., et al. (2023) Advancements in Clinical Aspects of Targeted Therapy and Immunotherapy in Breast Cancer. Molecular Cancer, 22, Article No. 105. https://doi.org/10.1186/s12943-023-01805-y
|
[2]
|
Tarantino, P., Hamilton, E., Tolaney, S.M., Cortes, J., Morganti, S., Ferraro, E., et al. (2020) HER2-Low Breast Cancer: Pathological and Clinical Landscape. Journal of Clinical Oncology, 38, 1951-1962. https://doi.org/10.1200/jco.19.02488
|
[3]
|
Kreutzfeldt, J., Rozeboom, B., Dey, N. and De, P. (2020) The Trastuzumab Era: Current and Upcoming Targeted HER2+ Breast Cancer Therapies. American Journal of Cancer Research, 10, 1045-1067.
|
[4]
|
李依敏, 苏思贞, 朱静, 等. 乳腺癌靶向治疗药物治疗研究进展[J]. 山东医药, 2017, 57(9): 107-109.
|
[5]
|
Cortazar, P., Zhang, L., Untch, M., Mehta, K., Costantino, J.P., Wolmark, N., et al. (2014) Pathological Complete Response and Long-Term Clinical Benefit in Breast Cancer: The CTNeoBC Pooled Analysis. The Lancet, 384, 164-172. https://doi.org/10.1016/s0140-6736(13)62422-8
|
[6]
|
Haque, W., Verma, V., Hatch, S., Suzanne Klimberg, V., Brian Butler, E. and Teh, B.S. (2018) Response Rates and Pathologic Complete Response by Breast Cancer Molecular Subtype Following Neoadjuvant Chemotherapy. Breast Cancer Research and Treatment, 170, 559-567. https://doi.org/10.1007/s10549-018-4801-3
|
[7]
|
Korde, L.A., Somerfield, M.R., Carey, L.A., Crews, J.R., Denduluri, N., Hwang, E.S., et al. (2021) Neoadjuvant Chemotherapy, Endocrine Therapy, and Targeted Therapy for Breast Cancer: ASCO Guideline. Journal of Clinical Oncology, 39, 1485-1505. https://doi.org/10.1200/jco.20.03399
|
[8]
|
Yee, D., DeMichele, A.M., Yau, C., Isaacs, C., Symmans, W.F., Albain, K.S., et al. (2020) Association of Event-Free and Distant Recurrence-Free Survival with Individual-Level Pathologic Complete Response in Neoadjuvant Treatment of Stages 2 and 3 Breast Cancer: Three-Year Follow-Up Analysis for the I-SPY2 Adaptively Randomized Clinical Trial. JAMA Oncology, 6, 1355-1362. https://doi.org/10.1001/jamaoncol.2020.2535
|
[9]
|
Schneeweiss, A., Chia, S., Hickish, T., Harvey, V., Eniu, A., Waldron-Lynch, M., et al. (2018) Long-Term Efficacy Analysis of the Randomised, Phase II TRYPHAENA Cardiac Safety Study: Evaluating Pertuzumab and Trastuzumab Plus Standard Neoadjuvant Anthracycline-Containing and Anthracycline-Free Chemotherapy Regimens in Patients with HER2-Positive Early Breast Cancer. European Journal of Cancer, 89, 27-35. https://doi.org/10.1016/j.ejca.2017.10.021
|
[10]
|
Pinto, A.C., Ades, F., de Azambuja, E. and Piccart-Gebhart, M. (2013) Trastuzumab for Patients with HER2 Positive Breast Cancer: Delivery, Duration and Combination Therapies. The Breast, 22, S152-S155. https://doi.org/10.1016/j.breast.2013.07.029
|
[11]
|
Kunte, S., Abraham, J. and Montero, A.J. (2020) Novel HER2-Targeted Therapies for HER2-Positive Metastatic Breast Cancer. Cancer, 126, 4278-4288. https://doi.org/10.1002/cncr.33102
|
[12]
|
Gianni, L., Eiermann, W., Semiglazov, V., Lluch, A., Tjulandin, S., Zambetti, M., et al. (2014) Neoadjuvant and Adjuvant Trastuzumab in Patients with HER2-Positive Locally Advanced Breast Cancer (NOAH): Follow-Up of a Randomised Controlled Superiority Trial with a Parallel HER2-Negative Cohort. The Lancet Oncology, 15, 640-647. https://doi.org/10.1016/s1470-2045(14)70080-4
|
[13]
|
Nader-Marta, G., Martins-Branco, D. and de Azambuja, E. (2022) How We Treat Patients with Metastatic HER2-Positive Breast Cancer. ESMO Open, 7, Article ID: 100343. https://doi.org/10.1016/j.esmoop.2021.100343
|
[14]
|
Gianni, L., Pienkowski, T., Im, Y., Tseng, L., Liu, M., Lluch, A., et al. (2016) 5-Year Analysis of Neoadjuvant Pertuzumab and Trastuzumab in Patients with Locally Advanced, Inflammatory, or Early-Stage HER2-Positive Breast Cancer (NeoSphere): A Multicentre, Open-Label, Phase 2 Randomised Trial. The Lancet Oncology, 17, 791-800. https://doi.org/10.1016/s1470-2045(16)00163-7
|
[15]
|
Shao, Z., Pang, D., Yang, H., Li, W., Wang, S., Cui, S., et al. (2020) Efficacy, Safety, and Tolerability of Pertuzumab, Trastuzumab, and Docetaxel for Patients with Early or Locally Advanced ERBB2-Positive Breast Cancer in Asia. JAMA Oncology, 6, e193692. https://doi.org/10.1001/jamaoncol.2019.3692
|
[16]
|
van Ramshorst, M.S., van der Voort, A., van Werkhoven, E.D., Mandjes, I.A., Kemper, I., Dezentjé, V.O., et al. (2018) Neoadjuvant Chemotherapy with or without Anthracyclines in the Presence of Dual HER2 Blockade for HER2-Positive Breast Cancer (TRAIN-2): A Multicentre, Open-Label, Randomised, Phase 3 Trial. The Lancet Oncology, 19, 1630-1640. https://doi.org/10.1016/s1470-2045(18)30570-9
|
[17]
|
van der Voort, A., van Ramshorst, M.S., van Werkhoven, E.D., Mandjes, I.A., Kemper, I., Vulink, A.J., et al. (2021) Three-year Follow-Up of Neoadjuvant Chemotherapy with or without Anthracyclines in the Presence of Dual ERBB2 Blockade in Patients with ERBB2-Positive Breast Cancer: A Secondary Analysis of the TRAIN-2 Randomized, Phase 3 Trial. JAMA Oncology, 7, 978-984. Https://doi.org/10.1001/jamaoncol.2021.1371
|
[18]
|
Hurvitz, S.A., Martin, M., Symmans, W.F., Jung, K.H., Huang, C., Thompson, A.M., et al. (2018) Neoadjuvant Trastuzumab, Pertuzumab, and Chemotherapy versus Trastuzumab Emtansine Plus Pertuzumab in Patients with HER2-Positive Breast Cancer (KRISTINE): A Randomised, Open-Label, Multicentre, Phase 3 Trial. The Lancet Oncology, 19, 115-126. https://doi.org/10.1016/s1470-2045(17)30716-7
|
[19]
|
Hurvitz, S.A., Martin, M., Jung, K.H., Huang, C., Harbeck, N., Valero, V., et al. (2019) Neoadjuvant Trastuzumab Emtansine and Pertuzumab in Human Epidermal Growth Factor Receptor 2-Positive Breast Cancer: Three-Year Outcomes from the Phase III KRISTINE Study. Journal of Clinical Oncology, 37, 2206-2216. https://doi.org/10.1200/jco.19.00882
|
[20]
|
Bittner, B., Richter, W. and Schmidt, J. (2018) Subcutaneous Administration of Biotherapeutics: An Overview of Current Challenges and Opportunities. BioDrugs, 32, 425-440. https://doi.org/10.1007/s40259-018-0295-0
|
[21]
|
《抗肿瘤药物创新皮下制剂临床应用的药事服务专家共识》编写组, 张玉. 抗肿瘤药物创新皮下制剂临床应用的药事服务专家共识[J]. 中国医院药学杂志, 2024, 44(14): 1603-1612, 1619.
|
[22]
|
Jackisch, C., Hegg, R., Stroyakovskiy, D., Ahn, J., Melichar, B., Chen, S., et al. (2016) HannaH Phase III Randomised Study: Association of Total Pathological Complete Response with Event-Free Survival in HER2-Positive Early Breast Cancer Treated with Neoadjuvant-Adjuvant Trastuzumab after 2 Years of Treatment-Free Follow-Up. European Journal of Cancer, 62, 62-75. https://doi.org/10.1016/j.ejca.2016.03.087
|
[23]
|
Gligorov, J., Pivot, X., Ataseven, B., De Laurentiis, M., Jung, K.H., Manikhas, A., et al. (2022) Safety and Efficacy of Adjuvant Subcutaneous Trastuzumab in Human Epidermal Growth Factor Receptor 2-Positive Early Breast Cancer: Final Results of the SafeHER Study. The Breast, 64, 151-158. https://doi.org/10.1016/j.breast.2022.03.001
|
[24]
|
Shao, Z., Huang, T., Fan, Z., Wang, Y., Yan, X., Yang, H., et al. (2022) 1MO the Fixed-Dose Combination of Pertuzumab and Trastuzumab for Subcutaneous Injection (PH FDC SC) in Chinese Patients (PTS) with HER2-Positive Early Breast Cancer (EBC): Primary Analysis of the Phase III, Randomised Fdchina Study. Annals of Oncology, 33, S1431. https://doi.org/10.1016/j.annonc.2022.10.008
|
[25]
|
Roy, V. and Perez, E.A. (2009) Beyond Trastuzumab: Small Molecule Tyrosine Kinase Inhibitors in HER-2-Positive Breast Cancer. The Oncologist, 14, 1061-1069. https://doi.org/10.1634/theoncologist.2009-0142
|
[26]
|
Murthy, R.K., Loi, S., Okines, A., Paplomata, E., Hamilton, E., Hurvitz, S.A., et al. (2020) Tucatinib, Trastuzumab, and Capecitabine for HER2-Positive Metastatic Breast Cancer. New England Journal of Medicine, 382, 597-609. https://doi.org/10.1056/nejmoa1914609
|
[27]
|
Baselga, J., Bradbury, I., Eidtmann, H., Di Cosimo, S., de Azambuja, E., Aura, C., et al. (2012) Lapatinib with Trastuzumab for HER2-Positive Early Breast Cancer (Ne-oALTTO): A Randomised, Open-Label, Multicentre, Phase 3 Trial. The Lancet, 379, 633-640. https://doi.org/10.1016/s0140-6736(11)61847-3
|
[28]
|
Sirhan, Z., Thyagarajan, A. and Sahu, R.P. (2022) The Efficacy of Tucatinib-Based Therapeutic Approaches for HER2-Positive Breast Cancer. Military Medical Research, 9, Article No. 39. https://doi.org/10.1186/s40779-022-00401-3
|
[29]
|
Awada, A., Colomer, R., Inoue, K., Bondarenko, I., Badwe, R.A., Demetriou, G., et al. (2016) Neratinib Plus Paclitaxel vs Trastuzumab Plus Paclitaxel in Previously Untreated Metastatic ERBB2-Positive Breast Cancer: The NEfERT-T Randomized Clinical Tril. JAMA Oncology, 2, 1557-1564. https://doi.org/10.1001/jamaoncol.2016.0237
|
[30]
|
Gelmon, K.A., Boyle, F.M., Kaufman, B., Huntsman, D.G., Manikhas, A., Di Leo, A., et al. (2015) Lapatinib or Trastuzumab Plus Taxane Therapy for Human Epidermal Growth Factor Receptor 2-Positive Advanced Breast Cancer: Final Results of NCIC CTG MA.31. Journal of Clinical Oncology, 33, 1574-1583. https://doi.org/10.1200/jco.2014.56.9590
|
[31]
|
Xuhong, J., Qi, X., Tang, P., Fan, L., Chen, L., Zhang, F., et al. (2020) Neoadjuvant Pyrotinib Plus Trastuzumab and Chemotherapy for Stage I-III Her2-Positive Breast Cancer: A Phase II Clinical Trial. The Oncologist, 25, e1909-e1920. https://doi.org/10.1002/onco.13546
|
[32]
|
Yin, W., Wang, Y., Wu, Z., Ye, Y., Zhou, L., Xu, S., et al. (2022) Neoadjuvant Trastuzumab and Pyrotinib for Locally Advanced HER2-Positive Breast Cancer (NeoATP): Primary Analysis of a Phase II Study. Clinical Cancer Research, 28, 3677-3685. https://doi.org/10.1158/1078-0432.ccr-22-0446
|
[33]
|
Zhu, J., Jiao, D., Wang, C., Lu, Z., Chen, X., Li, L., et al. (2022) Neoadjuvant Efficacy of Three Targeted Therapy Strategies for HER2-Positive Breast Cancer Based on the Same Chemotherapy Regimen. Cancers, 14, Article 4508. https://doi.org/10.3390/cancers14184508
|
[34]
|
Wu, J., Jiang, Z., Liu, Z., Yang, B., Yang, H., Tang, J., et al. (2022) Neoadjuvant Pyrotinib, Trastuzumab, and Docetaxel for HER2-Positive Breast Cancer (PHEDRA): A Double-Blind, Randomized Phase 3 Trial. BMC Medicine, 20, Article No. 498. https://doi.org/10.1186/s12916-022-02708-3
|
[35]
|
Tsuchikama, K. and An, Z. (2016) Antibody-Drug Conjugates: Recent Advances in Conjugation and Linker Chemistries. Protein & Cell, 9, 33-46. https://doi.org/10.1007/s13238-016-0323-0
|
[36]
|
Verma, S., Miles, D., Gianni, L., Krop, I.E., Welslau, M., Baselga, J., et al. (2012) Trastuzumab Emtansine for HER2-Positive Advanced Breast Cancer. New England Journal of Medicine, 367, 1783-1791. https://doi.org/10.1056/nejmoa1209124
|
[37]
|
Harbeck, N., Gluz, O., Christgen, M., Kates, R.E., Braun, M., Küemmel, S., et al. (2017) De-Escalation Strategies in Human Epidermal Growth Factor Receptor 2 (HER2)-Positive Early Breast Cancer (BC): Final Analysis of the West German Study Group Adjuvant Dynamic Marker-Adjusted Personalized Therapy Trial Optimizing Risk Assessment and Therapy Response Prediction in Early BC HER2-and Hormone Receptor-Positive Phase II Randomized Trial—Efficacy, Safety, and Predictive Markers for 12 Weeks of Neoadjuvant Trastuzumab Emtansine with or without Endocrine Therapy (ET) versus Trastuzumab Plus ET. Journal of Clinical Oncology, 35, 3046-3054. https://doi.org/10.1200/jco.2016.71.9815
|
[38]
|
Huang, C., Yang, Y., Kwong, A., Chen, S., Tseng, L., Liu, M., et al. (2021) Trastuzumab Emtansine (T-DM1) versus Trastuzumab in Chinese Patients with Residual Invasive Disease after Neoadjuvant Chemotherapy and HER2-Targeted Therapy for HER2-Positive Breast Cancer in the Phase 3 KATHERINE Study. Breast Cancer Research and Treatment, 187, 759-768. https://doi.org/10.1007/s10549-021-06166-y
|
[39]
|
Xu, Z., Guo, D., Jiang, Z., Tong, R., Jiang, P., Bai, L., et al. (2019) Novel HER2-Targeting Antibody-Drug Conjugates of Trastuzumab Beyond T-DM1 in Breast Cancer: Trastuzumab Deruxtecan(DS-8201a) and (Vic-)trastuzumab Duocarmazine (SYD985). European Journal of Medicinal Chemistry, 183, Article ID: 111682. https://doi.org/10.1016/j.ejmech.2019.111682
|
[40]
|
Cortés, J., Kim, S., Chung, W., Im, S., Park, Y.H., Hegg, R., et al. (2022) Trastuzumab Deruxtecan versus Trastuzumab Emtansine for Breast Cancer. New England Journal of Medicine, 386, 1143-1154. https://doi.org/10.1056/nejmoa2115022
|
[41]
|
Dowling, G.P., Toomey, S., Bredin, P., Parker, I., Mulroe, E., Marron, J., et al. (2024) Neoadjuvant Trastuzumab Deruxtecan (T-DXd) with Response-Directed Definitive Therapy in Early Stage HER2-Positive Breast Cancer: A Phase II Study Protocol (SHAMROCK Study). BMC Cancer, 24, Article No. 91. https://doi.org/10.1186/s12885-024-11851-4
|
[42]
|
Harbeck, N., Boileau, J., Modi, S., Kelly, C.M., Ohno, S., Wu, J., et al. (2022) Abstract OT1-12-04: A Phase 3, Open-Label Trial of Neoadjuvant Trastuzumab Deruxtecan (T-DXd) Monotherapy or T-DXd Followed by THP Compared with ddAC-THP in Patients with High-Risk HER2-Positive Early-Stage Breast Cancer (DESTINY-Breast11). Cancer Research, 82, OT1-12-04. https://doi.org/10.1158/1538-7445.sabcs21-ot1-12-04
|
[43]
|
Weng, W., Meng, T., Zhao, Q., Shen, Y., Fu, G., Shi, J., et al. (2023) Antibody-Exatecan Conjugates with a Novel Self-Immolative Moiety Overcome Resistance in Colon and Lung Cancer. Cancer Discovery, 13, 950-973. https://doi.org/10.1158/2159-8290.cd-22-1368
|