[1]
|
Chen, Z., Song, S., Ma, B., Li, Y., Shao, Y., Shi, J., et al. (2021) Recent Progress on Sorption/Desorption-Based Atmospheric Water Harvesting Powered by Solar Energy. Solar Energy Materials and Solar Cells, 230, Article 111233. https://doi.org/10.1016/j.solmat.2021.111233
|
[2]
|
Zhang, S., Fu, J., Das, S., Ye, K., Zhu, W. and Ben, T. (2022) Crystalline Porous Organic Salt for Ultrarapid Adsorption/Desorption-Based Atmospheric Water Harvesting by Dual Hydrogen Bond System. Angewandte Chemie International Edition, 61, e202208660. https://doi.org/10.1002/anie.202208660
|
[3]
|
Geng, K., He, T., Liu, R., Dalapati, S., Tan, K.T., Li, Z., et al. (2020) Covalent Organic Frameworks: Design, Synthesis, and Functions. Chemical Reviews, 120, 8814-8933. https://doi.org/10.1021/acs.chemrev.9b00550
|
[4]
|
Côté, A.P., Benin, A.I., Ockwig, N.W., O’Keeffe, M., Matzger, A.J. and Yaghi, O.M. (2005) Porous, Crystalline, Covalent Organic Frameworks. Science, 310, 1166-1170. https://doi.org/10.1126/science.1120411
|
[5]
|
Colson, J.W., Woll, A.R., Mukherjee, A., Levendorf, M.P., Spitler, E.L., Shields, V.B., et al. (2011) Oriented 2D Covalent Organic Framework Thin Films on Single-Layer Graphene. Science, 332, 228-231. https://doi.org/10.1126/science.1202747
|
[6]
|
Ding, S. and Wang, W. (2013) Covalent Organic Frameworks (COFs): From Design to Applications. Chemical Society Reviews, 42, 548-568. https://doi.org/10.1039/c2cs35072f
|
[7]
|
Huang, N., Wang, P. and Jiang, D. (2016) Covalent Organic Frameworks: A Materials Platform for Structural and Functional Designs. Nature Reviews Materials, 1, Article 16068. https://doi.org/10.1038/natrevmats.2016.68
|
[8]
|
Wang, H., Zeng, Z., Xu, P., Li, L., Zeng, G., Xiao, R., et al. (2019) Recent Progress in Covalent Organic Framework Thin Films: Fabrications, Applications and Perspectives. Chemical Society Reviews, 48, 488-516. https://doi.org/10.1039/c8cs00376a
|
[9]
|
Guan, X., Ma, Y., Li, H., Yusran, Y., Xue, M., Fang, Q., et al. (2018) Fast, Ambient Temperature and Pressure Ionothermal Synthesis of Three-Dimensional Covalent Organic Frameworks. Journal of the American Chemical Society, 140, 4494-4498. https://doi.org/10.1021/jacs.8b01320
|
[10]
|
Sun, C., Sheng, D., Wang, B. and Feng, X. (2023) Covalent Organic Frameworks for Extracting Water from Air. Angewandte Chemie International Edition, 62, e202303378. https://doi.org/10.1002/anie.202303378
|
[11]
|
Lin, C., Zhang, L., Zhao, Z. and Xia, Z. (2017) Design Principles for Covalent Organic Frameworks as Efficient Electrocatalysts in Clean Energy Conversion and Green Oxidizer Production. Advanced Materials, 29, Article 1606635. https://doi.org/10.1002/adma.201606635
|
[12]
|
Yu, S., Lyu, H., Tian, J., Wang, H., Zhang, D., Liu, Y., et al. (2016) A Polycationic Covalent Organic Framework: A Robust Adsorbent for Anionic Dye Pollutants. Polymer Chemistry, 7, 3392-3397. https://doi.org/10.1039/c6py00281a
|
[13]
|
Ma, L., Wang, S., Feng, X. and Wang, B. (2016) Recent Advances of Covalent Organic Frameworks in Electronic and Optical Applications. Chinese Chemical Letters, 27, 1383-1394. https://doi.org/10.1016/j.cclet.2016.06.046
|
[14]
|
Wan, S., Gándara, F., Asano, A., Furukawa, H., Saeki, A., Dey, S.K., et al. (2011) Covalent Organic Frameworks with High Charge Carrier Mobility. Chemistry of Materials, 23, 4094-4097. https://doi.org/10.1021/cm201140r
|
[15]
|
Wang, J., Hua, L., Li, C. and Wang, R. (2022) Atmospheric Water Harvesting: Critical Metrics and Challenges. Energy & Environmental Science, 15, 4867-4871. https://doi.org/10.1039/d2ee03079a
|
[16]
|
Kim, H., Rao, S.R., Kapustin, E.A., Zhao, L., Yang, S., Yaghi, O.M., et al. (2018) Adsorption-Based Atmospheric Water Harvesting Device for Arid Climates. Nature Communications, 9, Article No. 1191. https://doi.org/10.1038/s41467-018-03162-7
|
[17]
|
Kim, H., Yang, S., Rao, S.R., Narayanan, S., Kapustin, E.A., Furukawa, H., et al. (2017) Water Harvesting from Air with Metal-Organic Frameworks Powered by Natural Sunlight. Science, 356, 430-434. https://doi.org/10.1126/science.aam8743
|
[18]
|
张成龙. 激光制备超疏水-超亲水仿生结构表面及集水特性研究[D]: [硕士学位论文]. 温州: 温州大学, 2023.
|
[19]
|
Ng, E. and Mintova, S. (2008) Nanoporous Materials with Enhanced Hydrophilicity and High Water Sorption Capacity. Microporous and Mesoporous Materials, 114, 1-26. https://doi.org/10.1016/j.micromeso.2007.12.022
|
[20]
|
Tashiro, Y., Kubo, M., Katsumi, Y., Meguro, T. and Komeya, K. (2004) Assessment of Adsorption-Desorption Characteristics of Adsorbents for Adsorptive Desiccant Cooling System. Journal of Materials Science, 39, 1315-1319. https://doi.org/10.1023/b:jmsc.0000013937.11959.6a
|
[21]
|
Resasco, D.E., Crossley, S.P., Wang, B. and White, J.L. (2021) Interaction of Water with Zeolites: A Review. Catalysis Reviews, 63, 302-362. https://doi.org/10.1080/01614940.2021.1948301
|
[22]
|
Metrane, A., Delhali, A., Ouikhalfan, M., Assen, A.H. and Belmabkhout, Y. (2022) Water Vapor Adsorption by Porous Materials: From Chemistry to Practical Applications. Journal of Chemical & Engineering Data, 67, 1617-1653. https://doi.org/10.1021/acs.jced.2c00145
|
[23]
|
Henninger, S.K., Jeremias, F., Kummer, H., Schossig, P. and Henning, H. (2012) Novel Sorption Materials for Solar Heating and Cooling. Energy Procedia, 30, 279-288. https://doi.org/10.1016/j.egypro.2012.11.033
|
[24]
|
Yaghi, O.M., O'Keeffe, M., Ockwig, N.W., Chae, H.K., Eddaoudi, M. and Kim, J. (2003) Reticular Synthesis and the Design of New Materials. Nature, 423, 705-714. https://doi.org/10.1038/nature01650
|
[25]
|
Furukawa, H., Ko, N., Go, Y.B., Aratani, N., Choi, S.B., Choi, E., et al. (2010) Ultrahigh Porosity in Metal-Organic Frameworks. Science, 329, 424-428. https://doi.org/10.1126/science.1192160
|
[26]
|
AbdulHalim, R.G., Bhatt, P.M., Belmabkhout, Y., Shkurenko, A., Adil, K., Barbour, L.J., et al. (2017) A Fine-Tuned Metal-Organic Framework for Autonomous Indoor Moisture Control. Journal of the American Chemical Society, 139, 10715-10722. https://doi.org/10.1021/jacs.7b04132
|
[27]
|
Sheikhi, S. and Jalali, F. (2021) Zr-MOF@Polyaniline as an Efficient Platform for Nickel Deposition: Application to Methanol Electro-Oxidation. Fuel, 296, Article 120677. https://doi.org/10.1016/j.fuel.2021.120677
|
[28]
|
Chen, Y., Li, P., Modica, J.A., Drout, R.J. and Farha, O.K. (2018) Acid-Resistant Mesoporous Metal-Organic Framework toward Oral Insulin Delivery: Protein Encapsulation, Protection, and Release. Journal of the American Chemical Society, 140, 5678-5681. https://doi.org/10.1021/jacs.8b02089
|
[29]
|
Gao, Z., Wang, C., Li, J., Zhu, Y., Zhang, Z. and Hu, W. (2020) Conductive Metal-Organic Frameworks for Electrocatalysis: Achievements, Challenges, and Opportunities. Acta Physico Chimica Sinica, 37, Article 2010025. https://doi.org/10.3866/pku.whxb202010025
|
[30]
|
Gan, L., Wang, L., Xu, L., Fang, X., Pei, C., Wu, Y., et al. (2021) Fe3C-Porous Carbon Derived from Fe2O3 Loaded MOF-74(Zn) for the Removal of High Concentration BPA: The Integrations of Adsorptive/Catalytic Synergies and Radical/Non-Radical Mechanisms. Journal of Hazardous Materials, 413, Article 125305. https://doi.org/10.1016/j.jhazmat.2021.125305
|
[31]
|
Liu, X., Wang, X. and Kapteijn, F. (2020) Water and Metal-Organic Frameworks: From Interaction toward Utilization. Chemical Reviews, 120, 8303-8377. https://doi.org/10.1021/acs.chemrev.9b00746
|
[32]
|
Nguyen, H.L. (2023) Covalent Organic Frameworks for Atmospheric Water Harvesting. Advanced Materials, 35, Article 2300018. https://doi.org/10.1002/adma.202300018
|
[33]
|
Biswal, B.P., Kandambeth, S., Chandra, S., Shinde, D.B., Bera, S., Karak, S., et al. (2015) Pore Surface Engineering in Porous, Chemically Stable Covalent Organic Frameworks for Water Adsorption. Journal of Materials Chemistry A, 3, 23664-23669. https://doi.org/10.1039/c5ta07998e
|
[34]
|
Stegbauer, L., Hahn, M.W., Jentys, A., Savasci, G., Ochsenfeld, C., Lercher, J.A., et al. (2015) Tunable Water and CO2 Sorption Properties in Isostructural Azine-Based Covalent Organic Frameworks through Polarity Engineering. Chemistry of Materials, 27, 7874-7881. https://doi.org/10.1021/acs.chemmater.5b02151
|
[35]
|
Karak, S., Kandambeth, S., Biswal, B.P., Sasmal, H.S., Kumar, S., Pachfule, P., et al. (2017) Constructing Ultraporous Covalent Organic Frameworks in Seconds via an Organic Terracotta Process. Journal of the American Chemical Society, 139, 1856-1862. https://doi.org/10.1021/jacs.6b08815
|
[36]
|
Nguyen, H.L., Hanikel, N., Lyle, S.J., Zhu, C., Proserpio, D.M. and Yaghi, O.M. (2020) A Porous Covalent Organic Framework with Voided Square Grid Topology for Atmospheric Water Harvesting. Journal of the American Chemical Society, 142, 2218-2221. https://doi.org/10.1021/jacs.9b13094
|
[37]
|
Tan, K.T., Tao, S., Huang, N. and Jiang, D. (2021) Water Cluster in Hydrophobic Crystalline Porous Covalent Organic Frameworks. Nature Communications, 12, Article No. 6747. https://doi.org/10.1038/s41467-021-27128-4
|
[38]
|
Nagai, A., Guo, Z., Feng, X., Jin, S., Chen, X., Ding, X., et al. (2011) Pore Surface Engineering in Covalent Organic Frameworks. Nature Communications, 2, Article No. 536. https://doi.org/10.1038/ncomms1542
|
[39]
|
Nguyen, H.L., Gropp, C., Hanikel, N., Möckel, A., Lund, A. and Yaghi, O.M. (2022) Hydrazine-Hydrazide-Linked Covalent Organic Frameworks for Water Harvesting. ACS Central Science, 8, 926-932. https://doi.org/10.1021/acscentsci.2c00398
|
[40]
|
Grunenberg, L., Savasci, G., Emmerling, S.T., Heck, F., Bette, S., Cima Bergesch, A., et al. (2023) Postsynthetic Transformation of Imine-Into Nitrone-Linked Covalent Organic Frameworks for Atmospheric Water Harvesting at Decreased Humidity. Journal of the American Chemical Society, 145, 13241-13248. https://doi.org/10.1021/jacs.3c02572
|
[41]
|
Chen, L., Han, W., Yan, X., Zhang, J., Jiang, Y. and Gu, Z. (2022) A Highly Stable Ortho-Ketoenamine Covalent Organic Framework with Balanced Hydrophilic and Hydrophobic Sites for Atmospheric Water Harvesting. Chem Sus Chem, 15, e202201824. https://doi.org/10.1002/cssc.202201824
|
[42]
|
Sun, C., Zhu, Y., Shao, P., Chen, L., Huang, X., Zhao, S., et al. (2023) 2D Covalent Organic Framework for Water Harvesting with Fast Kinetics and Low Regeneration Temperature. Angewandte Chemie International Edition, 62, e202217103. https://doi.org/10.1002/anie.202217103
|
[43]
|
Chen, Y., Yang, Y., Wang, Y., Xiong, Q., Yang, J., Xiang, S., et al. (2022) Ultramicroporous Hydrogen-Bonded Organic Framework Material with a Thermoregulatory Gating Effect for Record Propylene Separation. Journal of the American Chemical Society, 144, 17033-17040. https://doi.org/10.1021/jacs.2c06585
|