[1]
|
Mattiuzzi, C. and Lippi, G. (2019) Current Cancer Epidemiology. Journal of Epidemiology and Global Health, 9, 217-222. https://doi.org/10.2991/jegh.k.191008.001
|
[2]
|
Nicolaidou, V., Papaneophytou, C. and Koufaris, C. (2020) Detection and Characterisation of Novel Alternative Splicing Variants of the Mitochondrial Folate Enzyme MTHFD2. Molecular Biology Reports, 47, 7089-7096. https://doi.org/10.1007/s11033-020-05775-y
|
[3]
|
Zhao, L.N. and Kaldis, P. (2022) The Catalytic Mechanism of the Mitochondrial Methylenetetrahydrofolate Dehydrogenase/Cyclohydrolase (MTHFD2). PLOS Computational Biology, 18, e1010140. https://doi.org/10.1371/journal.pcbi.1010140
|
[4]
|
Scaletti, E.R., Gustafsson Westergren, R., Andersson, Y., Wiita, E., Henriksson, M., Homan, E.J., et al. (2022) The First Structure of Human MTHFD2L and Its Implications for the Development of Isoform‐Selective Inhibitors. ChemMedChem, 17, e202200274. https://doi.org/10.1002/cmdc.202200274
|
[5]
|
Wei, Y., Liu, P., Li, Q., Du, J., Chen, Y., Wang, Y., et al. (2019) The Effect of MTHFD2 on the Proliferation and Migration of Colorectal Cancer Cell Lines. OncoTargets and Therapy, 12, 6361-6370. https://doi.org/10.2147/ott.s210800
|
[6]
|
Rather, G.M. (2023) Folate Trapping Is Lethal to Cancer Cells. Chemical Biology & Drug Design, 102, 1588-1591. https://doi.org/10.1111/cbdd.14329
|
[7]
|
Tedeschi, P.M., Vazquez, A., Kerrigan, J.E. and Bertino, J.R. (2015) Mitochondrial Methylenetetrahydrofolate Dehydrogenase (MTHFD2) Overexpression Is Associated with Tumor Cell Proliferation and Is a Novel Target for Drug Development. Molecular Cancer Research, 13, 1361-1366. https://doi.org/10.1158/1541-7786.mcr-15-0117
|
[8]
|
Zhu, L., Liu, X., Zhang, W., Hu, H., Wang, Q. and Xu, K. (2022) MTHFD2 Is a Potential Oncogene for Its Strong Association with Poor Prognosis and High Level of Immune Infiltrates in Urothelial Carcinomas of Bladder. BMC Cancer, 22, Article No. 556. https://doi.org/10.1186/s12885-022-09606-0
|
[9]
|
Sun, B., He, Z., Liu, G., Fu, X., Chen, Z. and Li, G. (2021) Methylene Tetrahydrofolate Dehydrogenase 2 (MTHFD2) Is Overexpressed in Head and Neck Squamous Cell Carcinoma (HNSCC) and Correlated with Patient’s Poor Prognosis. Pteridines, 32, 98-105. https://doi.org/10.1515/pteridines-2020-0033
|
[10]
|
Liu, X., Huang, Y., Jiang, C., Ou, H., Guo, B., Liao, H., et al. (2016) Methylenetetrahydrofolate Dehydrogenase 2 Overexpression Is Associated with Tumor Aggressiveness and Poor Prognosis in Hepatocellular Carcinoma. Digestive and Liver Disease, 48, 953-960. https://doi.org/10.1016/j.dld.2016.04.015
|
[11]
|
He, H., Li, P., Jia, W., Hu, B. and Ji, C. (2020) High Expression of Methylenetetrahydrofolate Dehydrogenase 2 (MTHFD2) in Esophageal Squamous Cell Carcinoma and Its Clinical Prognostic Significance. Medical Science Monitor, 26, e920259. https://doi.org/10.12659/msm.920259
|
[12]
|
Arslan, R. and Ceylan, O. (2022) MTHFD2 Expression Profile and Its Prognostic Importance in Invasive Breast Carcinoma. International Journal of Medical Science and Clinical Invention, 9, 6014-5922. https://doi.org/10.18535/ijmsci/v9i03.08
|
[13]
|
Shi, L., Zhang, Q., Shou, X. and Niu, H. (2021) Expression and Prognostic Value Identification of Methylenetetrahydrofolate Dehydrogenase 2 (MTHFD2) in Brain Low-Grade Glioma. International Journal of General Medicine, 14, 4517-4527. https://doi.org/10.2147/ijgm.s323858
|
[14]
|
Yao, S., Peng, L., Elakad, O., Küffer, S., Hinterthaner, M., Danner, B.C., et al. (2021) One Carbon Metabolism in Human Lung Cancer. Translational Lung Cancer Research, 10, 2523-2538. https://doi.org/10.21037/tlcr-20-1039
|
[15]
|
Cui, X., Su, H., Yang, J., Wu, X., Huo, K., Jing, X., et al. (2022) Up-regulation of MTHFD2 Is Associated with Clinicopathological Characteristics and Poor Survival in Ovarian Cancer, Possibly by Regulating MOB1A Signaling. Journal of Ovarian Research, 15, Article No. 23. https://doi.org/10.1186/s13048-022-00954-w
|
[16]
|
Zhang, H., Zhu, S., Zhou, H., Li, R., Xia, X. and Xiong, H. (2023) Identification of MTHFD2 as a Prognostic Biomarker and Ferroptosis Regulator in Triple-Negative Breast Cancer. Frontiers in Oncology, 13, Article 1098357. https://doi.org/10.3389/fonc.2023.1098357
|
[17]
|
Cao, Y., Dai, Z., Xie, G., Liu, G., Guo, L. and Zhang, J. (2023) A Novel Metabolic-Related Gene Signature for Predicting Clinical Prognosis and Immune Microenvironment in Head and Neck Squamous Cell Carcinoma. Experimental Cell Research, 428, Article ID: 113628. https://doi.org/10.1016/j.yexcr.2023.113628
|
[18]
|
Boroughs, L.K. and DeBerardinis, R.J. (2015) Metabolic Pathways Promoting Cancer Cell Survival and Growth. Nature Cell Biology, 17, 351-359. https://doi.org/10.1038/ncb3124
|
[19]
|
Wang, J., Yu, Z., Jiang, Y., Le, T., Wu, Y., Li, Z., et al. (2024) Downregulation of MTHFD2 Inhibits Proliferation and Enhances Chemosensitivity in Hepatocellular Carcinoma via PI3K/AKT Pathway. Frontiers in Bioscience-Landmark, 29, 35. https://doi.org/10.31083/j.fbl2901035
|
[20]
|
Huang, J., Qin, Y., Lin, C., Huang, X. and Zhang, F. (2021) MTHFD2 Facilitates Breast Cancer Cell Proliferation via the AKT Signaling Pathway. Experimental and Therapeutic Medicine, 22, Article No. 703. https://doi.org/10.3892/etm.2021.10135
|
[21]
|
Shi, Y., Xu, Y., Yao, J., Yan, C., Su, H., Zhang, X., et al. (2021) MTHFD2 Promotes Tumorigenesis and Metastasis in Lung Adenocarcinoma by Regulating AKT/GSK‐3β/β‐Catenin Signalling. Journal of Cellular and Molecular Medicine, 25, 7013-7027. https://doi.org/10.1111/jcmm.16715
|
[22]
|
Li, Q., Yang, F., Shi, X., Bian, S., Shen, F., Wu, Y., et al. (2021) MTHFD2 Promotes Ovarian Cancer Growth and Metastasis via Activation of the STAT3 Signaling Pathway. FEBS Open Bio, 11, 2845-2857. https://doi.org/10.1002/2211-5463.13249
|
[23]
|
Deng, X., Liu, X., Hu, B., Liu, J., Fu, B. and Zhang, W. (2022) Upregulation of MTHFD2 Is Associated with PDL1 Activation in Bladder Cancer via the PI3K/AKT Pathway. International Journal of Molecular Medicine, 51, Article No. 14. https://doi.org/10.3892/ijmm.2022.5217
|
[24]
|
Wu, S., Cai, W., Shi, Z., Ming, X., Yang, X., Zhou, Y., et al. (2022) Knockdown of MTHFD2 Inhibits Proliferation and Migration of Nasopharyngeal Carcinoma Cells through the ERK Signaling Pathway. Biochemical and Biophysical Research Communications, 614, 47-55. https://doi.org/10.1016/j.bbrc.2022.05.007
|
[25]
|
Mo, X., Liu, Q., Liang, K. and Song, Y. (2024) Interference with MTHFD2 Induces Ferroptosis in Ovarian Cancer Cells through ERK Signaling to Suppress Tumor Malignant Progression. Journal of Bioenergetics and Biomembranes, 56, 333-345. https://doi.org/10.1007/s10863-024-10014-1
|
[26]
|
Zhou, F., Yuan, Z., Gong, Y., Li, L., Wang, Y., Wang, X., et al. (2023) Pharmacological Targeting of MTHFD2 Suppresses NSCLC via the Regulation of ILK Signaling Pathway. Biomedicine & Pharmacotherapy, 161, Article ID: 114412. https://doi.org/10.1016/j.biopha.2023.114412
|
[27]
|
Yue, L., Pei, Y., Zhong, L., Yang, H., Wang, Y., Zhang, W., et al. (2020) MTHFD2 Modulates Mitochondrial Function and DNA Repair to Maintain the Pluripotency of Mouse Stem Cells. Stem Cell Reports, 15, 529-545. https://doi.org/10.1016/j.stemcr.2020.06.018
|
[28]
|
Liu, X., Liu, S., Piao, C., Zhang, Z., Zhang, X., Jiang, Y., et al. (2021) Non‐Metabolic Function of MTHFD2 Activates CDK2 in Bladder Cancer. Cancer Science, 112, 4909-4919. https://doi.org/10.1111/cas.15159
|
[29]
|
Koufaris, C., Gallage, S., Yang, T., Lau, C., Valbuena, G.N. and Keun, H.C. (2016) Suppression of MTHFD2 in MCF-7 Breast Cancer Cells Increases Glycolysis, Dependency on Exogenous Glycine, and Sensitivity to Folate Depletion. Journal of Proteome Research, 15, 2618-2625. https://doi.org/10.1021/acs.jproteome.6b00188
|
[30]
|
Ju, H., Lu, Y., Chen, D., Zuo, Z., Liu, Z., Wu, Q., et al. (2018) Modulation of Redox Homeostasis by Inhibition of MTHFD2 in Colorectal Cancer: Mechanisms and Therapeutic Implications. JNCI: Journal of the National Cancer Institute, 111, 584-596. https://doi.org/10.1093/jnci/djy160
|
[31]
|
Cui, L., Chen, H. and Zhao, X. (2020) The Prognostic Significance of Immune-Related Metabolic Enzyme MTHFD2 in Head and Neck Squamous Cell Carcinoma. Diagnostics, 10, Article 689. https://doi.org/10.3390/diagnostics10090689
|
[32]
|
Wang, W., Gu, W., Tang, H., Mai, Z., Xiao, H., Zhao, J., et al. (2022) The Emerging Role of MTHFD Family Genes in Regulating the Tumor Immunity of Oral Squamous Cell Carcinoma. Journal of Oncology, 2022, Article ID: 4867730. https://doi.org/10.1155/2022/4867730
|
[33]
|
Green, N.H., Galvan, D.L., Badal, S.S., Chang, B.H., LeBleu, V.S., Long, J., et al. (2019) MTHFD2 Links RNA Methylation to Metabolic Reprogramming in Renal Cell Carcinoma. Oncogene, 38, 6211-6225. https://doi.org/10.1038/s41388-019-0869-4
|
[34]
|
Koufaris, C. and Nilsson, R. (2018) Protein Interaction and Functional Data Indicate MTHFD2 Involvement in RNA Processing and Translation. Cancer & Metabolism, 6, Article No. 12. https://doi.org/10.1186/s40170-018-0185-4
|
[35]
|
Shang, M., Ni, L., Shan, X., Cui, Y., Hu, P., Ji, Z., et al. (2023) MTHFD2 Reprograms Macrophage Polarization by Inhibiting PTEN. Cell Reports, 42, Article ID: 112481. https://doi.org/10.1016/j.celrep.2023.112481
|
[36]
|
Shang, M., Yang, H., Yang, R., Chen, T., Fu, Y., Li, Y., et al. (2021) The Folate Cycle Enzyme MTHFD2 Induces Cancer Immune Evasion through PD-L1 Up-Regulation. Nature Communications, 12, Article No. 1940. https://doi.org/10.1038/s41467-021-22173-5
|
[37]
|
Sugiura, A., Andrejeva, G., Voss, K., Heintzman, D.R., Xu, X., Madden, M.Z., et al. (2022) MTHFD2 Is a Metabolic Checkpoint Controlling Effector and Regulatory T Cell Fate and Function. Immunity, 55, 65-81.e9. https://doi.org/10.1016/j.immuni.2021.10.011
|
[38]
|
Shukla, K., Singh, N., Lewis, J.E., Tsang, A.W., Boothman, D.A., Kemp, M.L., et al. (2020) MTHFD2 Blockade Enhances the Efficacy of β-Lapachone Chemotherapy with Ionizing Radiation in Head and Neck Squamous Cell Cancer. Frontiers in Oncology, 10, Article 536377. https://doi.org/10.3389/fonc.2020.536377
|
[39]
|
Zhao, R., Feng, T., Gao, L., Sun, F., Zhou, Q., Wang, X., et al. (2022) PPFIA4 Promotes Castration-Resistant Prostate Cancer by Enhancing Mitochondrial Metabolism through MTHFD2. Journal of Experimental & Clinical Cancer Research, 41, Article No. 125. https://doi.org/10.1186/s13046-022-02331-3
|
[40]
|
Pikman, Y., Puissant, A., Alexe, G., Furman, A., Chen, L.M., Frumm, S.M., et al. (2016) Targeting MTHFD2 in Acute Myeloid Leukemia. The Journal of Cell Biology, 214, 2141OIA135. https://doi.org/10.1083/jcb.2141oia135
|
[41]
|
Kawai, J., Ota, M., Ohki, H., Toki, T., Suzuki, M., Shimada, T., et al. (2019) Structure-Based Design and Synthesis of an Isozyme-Selective MTHFD2 Inhibitor with a Tricyclic Coumarin Scaffold. ACS Medicinal Chemistry Letters, 10, 893-898. https://doi.org/10.1021/acsmedchemlett.9b00069
|