甲基四氢叶酸还原酶2在恶性肿瘤中代谢的研究进展
Research Progress on MTHFD2 in Malignant Tumors
DOI: 10.12677/acm.2025.152479, PDF, HTML, XML,    科研立项经费支持
作者: 韦世鑫, 冯 成, 叶自钊:右江民族医学院附属西南医院,广西 百色;百色市人民医院耳鼻咽喉头颈外科,广西 百色;杨开炎, 韦福依*:右江民族医学院附属西南医院,广西 百色
关键词: MTHFD2恶性肿瘤一碳代谢代谢重编程MTHFD2 Malignant Tumor One-Carbon Metabolism Metabolic Reprogramming
摘要: 亚甲基四氢叶酸还原酶2 (Methylenetetrahydrofolate dehydrogenase 2, MTHFD2)是一种参与叶酸代谢的四甲基叶酸脱氢酶,主要位于线粒体内,在一碳代谢过程中催化亚甲基四氢叶酸成甲酰基四氢叶酸。MTHFD2在恶性肿瘤组织中表达上调,在正常组织中几乎不表达,在肿瘤代谢重编程中发挥重要作用,通过AKT、JAK/STAT等信号通路调控代谢,影响细胞一碳代谢、有氧糖酵解,以适应快速增值的细胞所需要的物质,多数证据都表明其与肿瘤的发生、预后有着密切的关系,并将其作为预后标志物或潜在的治疗靶点。目前MTHFD2在人类恶性肿瘤中的代谢作用机制尚未明确,未来深入研究MTHFD2在肿瘤代谢重编程与信号通路的关系及其作为肿瘤治疗靶标的作用,可为恶性肿瘤的治疗提供新决策。
Abstract: Methylenetetrahydrofolate dehydrogenase 2 (MTHFD2) is an enzyme involved in folate metabolism, primarily located in the mitochondria. It catalyzes the conversion of methylenetetrahydrofolate to formyltetrahydrofolate during one-carbon metabolism. MTHFD2 is upregulated in malignant tumors and is almost not expressed in normal tissues, playing a significant role in tumor metabolic reprogramming. It regulates metabolism through signaling pathways such as AKT and JAK/STAT, affecting cellular one-carbon metabolism and aerobic glycolysis to accommodate the needs of rapidly proliferating cells. Most evidence suggests a close relationship between MTHFD2 expression and tumor development and prognosis, making it a potential prognostic marker or therapeutic target. Currently, the mechanisms of MTHFD2’s metabolic roles in human malignancies are not well understood. Future in-depth studies on the relationship between MTHFD2 in tumor metabolic reprogramming and signaling pathways, and its role as a therapeutic target, could provide new decisions for the treatment of malignant tumors.
文章引用:韦世鑫, 冯成, 叶自钊, 杨开炎, 韦福依. 甲基四氢叶酸还原酶2在恶性肿瘤中代谢的研究进展[J]. 临床医学进展, 2025, 15(2): 1324-1331. https://doi.org/10.12677/acm.2025.152479

1. 引言

恶性肿瘤在所有人类疾病中造成了最高的临床、社会和经济负担,预计在今后40年内癌症发病率、流行率和死亡率逐渐增加,在死亡率方面,恶性肿瘤是仅次于缺血性心脏病的第二大死因,但很可能在2060年成为第一大死亡原因[1]。恶性肿瘤是细胞异常增殖、分化的结果,肿瘤细胞常表现出高代谢水平,代谢相关基因的功能变化会导致恶性肿瘤的发生和发展。因此,代谢相关基因的功能和分子机制的研究在恶性肿瘤的治疗及预后中具有重要的意义。快速增殖的肿瘤试图通过上调叶酸途径来满足核苷酸生物合成的需求,叶酸途径为嘧啶和嘌呤的生物合成提供了基础,线粒体叶酸代谢酶亚甲基四氢叶酸脱氢酶2 (MTHFD2)作为多种肿瘤类型中最常上调的代谢酶之一[2],最新研究证据表明,MTHFD2在急性髓性白血病、胰腺、结直肠癌、胶质瘤和肾细胞癌中高水平表达,并与患者的低生存率相关。MTHFD2在癌细胞中高表达,而在健康细胞中几乎不表达[3]。因此,MTHFD2在调节肿瘤代谢中发挥重要作用,多数据证据表明,其与异常代谢相关,与肿瘤的发展、预后具有密切关系,并被认为是潜在治疗靶点。本文综述了MTHFD2与肿瘤的关系、对恶性肿瘤细胞的影响、调控信号通路,以及与恶性肿瘤进展和预后的关系基础,并探讨了其在代谢调节中的作用。

2. 亚甲基四氢叶酸还原酶分子结构与生理功能

2.1. 亚甲基四氢叶酸还原酶分子结构

MTHFD2最早于1960年由Scrimgeour和Huennekens在小鼠腹水肿瘤细胞中发现[4],MTHFD (350个氨基酸,37 kDa)是参与线粒体叶酸单碳代谢的主要酶之一,也被称为NMDMC (nadd依赖性线粒体亚甲基四氢叶酸脱氢酶–环水解酶),是一种水溶性B族维生素[5],MTHFD2具有亚甲基四氢叶酸脱氢酶(D)和环水解酶(C)活性,这些活性来源于其三功能前体亚甲基四氢叶酸脱氢酶、环水解酶和甲酰基四氢叶酸合成酶1 (MTHFD1),通过丧失C端合成酶结构域,并重新适应NAD+主要存在于线粒体和细胞质中[3]

2.2. 亚甲基四氢叶酸还原酶生理功能

MTHFD2在细胞中参与糖酵解和核苷酸、氨基酸和脂质的代谢合成,特别是四氢叶酸携带的一碳单位的合成,MTHFD2将5,10-亚甲基四氢叶酸(CH2THF)转化为10-甲酰基四氢叶酸(CHO-THF),并产生NADH/NADPH,从而促进一碳单位代谢。叶酸代谢包括从环境中摄取叶酸,然后将其转化为四氢叶酸(THF) [6]。来自供体的一碳单位,如蛋氨酸、丝氨酸、甘氨酸、二甲基甘氨酸和肌氨酸,被转移到叶酸载体上,叶酸载体随后将它们传递下去,推动生物合成反应。

3. 亚甲基四氢叶酸还原酶与肿瘤的关系

肿瘤是因细胞异常增殖、分化、迁移、侵袭、免疫抑制以及组织血管生成而发生发展的过程,叶酸作为一种必需的维生素,对于细胞的生长和分裂至关重要,而MTHFD2在叶酸代谢中的作用使其成为维持细胞正常功能和防止肿瘤形成的关键酶,MTHFD2在多种恶性肿瘤中表达上调,通过促进叶酸代谢机制调节癌细胞增值,进而影响肿瘤的发生、发展以及预后。叶酸代谢途径为各种细胞过程产生一碳甲酰基,包括从头合成嘌呤和胸腺嘧啶,它们是细胞增殖所必需的。

线粒体亚甲基四氢叶酸脱氢酶2 (MTHFD2)过表达与肿瘤细胞增殖相关[7]。利用癌症基因组图谱计划(TCGA)分析MTHFD2在癌组织中的表达,在31个人类癌细胞系中,25个(80.6%)癌细胞系中MTHFD2在癌组织中的表达高于相应的非肿瘤组织。MTHFD2在膀胱尿路上皮癌[8]、结肠癌[5]、头颈部鳞状细胞癌[9]、肝细胞癌[10]、食管鳞癌[11]、乳腺癌[12]、脑低级胶质瘤[13]等中表达上调,与患者预后不良相关,在食管鳞癌中,MTHFD2的高表达可作为食管鳞癌患者总生存期的一个独立的不利预后参数[11]。通过对98例肝癌组织进行免疫组化染色[10],发现MTHFD2在肝癌组织中的表达明显升高,且MTHFD2过表达与术后肿瘤转移和复发有显著关系。通过Cancer Genome Atlas和oncomine数据库分析MTHFD2基因mRNA在头颈部鳞状细胞癌肿瘤组织和癌旁正常组织中的相对表达水平,结果显示头颈部鳞状细胞癌中,MTHFD2 mRNA在肿瘤组织中的相对表达量显著高于正常组织[9]。TCGA数据库分析显示,MTHFD2在288个结直肠癌组织中的表达明显高于41个非肿瘤组织[5]。MTHFD2的表达与肺癌患者的分化程度差和淋巴结转移的发生显著相关,提示MTHFD2表达与肺癌进展相关[14]。Cui [15]等研究发现,转染si-MTHFD2下调MTHFD2的内源性表达水平,转染si-MTHFD2的卵巢癌细胞中,MTHFD2的表达显著降低,CCK-8检测显示MTHFD2敲除显著削弱卵巢癌的增殖能力。研究表明,MTHFD2可能是预测三阴乳腺癌[16]、头颈部鳞状细胞癌[17]预后的独立因素,MTHFD2因此可作为恶性肿瘤的预测靶标。综上所述,MTHFD2与肿瘤的发生发展密切相关,可能成为肿瘤预测性生物标志物。

4. 亚甲基四氢叶酸还原酶2在恶性肿瘤中代谢机制

肿瘤细胞也是细胞,并且具备了与众不同的代谢过程,称为代谢重编程,抑癌基因失活是发生癌症的基础,而绝大多数癌基因及抑癌基因在细胞代谢中发挥关键作用,促进细胞代谢重编程,使癌细胞从5条主要代谢途径(有氧糖酵解、谷氨酰胺分解、一碳代谢、磷酸戊糖途径、脂肪酸从头合成)中摄取[18]。癌细胞具有无限增值的能力,癌细胞常会重新连接其代谢信号通路,以适应营养和促进癌细胞增值。

4.1. 亚甲基四氢叶酸还原酶2在肿瘤中相关信号通路

在Yu [19]等对肝癌的研究中,选择4条与肿瘤恶性显著相关的通路,分析了它们与MTHFD2表达的相关性。结果显示,4条通路均与MTHFD2呈显著正相关,其中PI3K/AKT信号轴与MTHFD2表达相关性最显著。Huang [20]等在对乳腺癌中MTHFD2机制的研究发现,通过荧光素酶报告基因检测来检测MTHFD2对AKT转录活性变化的影响,AKT信号通路在MTHFD2过表达时被明显激活,表明MTHFD2可能通过AKT信号通路增加乳腺癌细胞的增殖,补充了其在代谢重塑中的酶促作用,MTHFD2可能通过促进一碳代谢途径,增加细胞内S-腺苷甲硫氨酸(SAM)和其他一碳单位的浓度,从而影响AKT的活性。Ying [21]等在肺腺癌的研究报道,MTHFD2在PC-9和H1975细胞中的过表达明显提高了β-catenin的表达水平和AKT/GSK3β的磷酸化水平,表明MTHFD2通过调节AKT/GSK-3β/β-catenin信号传导促进肺腺癌的发生和转移,MTHFD2在调节细胞内的活性氧(ROS)水平方面可能发挥作用。活性氧可以通过氧化修饰AKT或其下游靶点,促进AKT的活化。Li [22]等研究报道,MTHFD2在调节细胞生长和侵袭性中,通过激活STAT3和STAT3诱导的上皮–间质转化信号通路,进而促进卵巢癌的生长和转移,实验中发现敲低MTHDF2可使STAT3磷酸化失活。Deng [23]等人使用JAK/STAT通路激活剂RO8191治疗膀胱癌细胞,结果发现添加通路激活剂RO8191后细胞的相对活性和创面愈合率显著提高,而凋亡率显著降低,表明MTHFD2通过激活JAK/STAT信号通路促进细胞程序性死亡配体1 (programmed cell death-Ligand 1, PD-L1)的表达。Wu [24]等实验发现MTHFD2敲除导致细胞中p-ERK1/2和p-p38 MAPK的水平降低,ERK途径是MAPK的三种经典通路之一,与细胞增殖、侵袭和转移的关系最为密切,发现表明MTHFD2的下调抑制鼻咽癌细胞的增殖和迁移是一种依赖ERK的途径。Mo等人发现[25],干扰MTHFD2可诱导卵巢癌细胞铁死亡、促进ROS积累、破坏线粒体功能、降低ATP含量并抑制糖酵解,进一步研究发现干扰MTHFD2通过ERK信号传导影响OC细胞中的线粒体功能和糖酵解。最近Zhou [26]等研究表明MTHFD2与ILK信号传导呈正相关,小分子化合物C18能有效抑制MTHFD2,C18阻断MTHFD2/ILK信号通路,抑制非小细胞肺癌细胞生长、迁移、侵袭,诱导细胞凋亡。MTHFD2在细胞质中维持线粒体呼吸链的完整性并防止线粒体功能障碍,在细胞核中,MTHFD2稳定EXO1的磷酸化以支持DNA末端切除并促进同源重组修复[27]。在膀胱癌细胞中,MTHFD2与CDK2结合,并通过激活E2F1双向调节G1-S期的复制,促进细胞周期的进程[28],以上研究表明,MTHFD2在肿瘤中通过调节不同代谢信号通路,以适应营养和促进癌细胞增值。

4.2. 亚甲基四氢叶酸还原酶2在肿瘤中参与代谢方式

Koufaris [29]等发现MTHFD2在乳腺癌细胞代谢重编程中参与糖酵解(增加葡萄糖的消耗和乳酸的产生)、甘氨酸与丝氨酸相互转化、叶酸代谢。在糖酵解过程中,MTHFD2抑制导致细胞内葡萄糖-6-磷酸(G-6-P)和乳酸水平下降,但磷酸烯醇丙酮酸水平没有下降。Ju等[30]在对结肠癌实验中,稳定地敲除MTHFD2,发现MTHFD2的抑制干扰氧化还原稳态,增加过氧化氢作用下结肠癌细胞的细胞死亡,表明MTHFD2赋予氧化还原稳态并促进结直肠癌细胞生长和转移。Cui [31]等研究结果显示糖酵解/糖异生是头颈部鳞状细胞癌中代谢重编程最富集的途径。MTHFD2通过驱动叶酸循环来增强PD-L1转录,维持细胞内UDP-GlcNAc和cMYCO-GlcN的酰化[32]。Nathanael H. Green [33]等人发现增强的 HIF-2α翻译促进有氧糖酵解,通过RNA甲基化将一碳代谢与HIF-2α依赖性代谢重编程联系起来。Koufaris等[34]在研究中证明MTHFD2与核糖体和RNA加工蛋白相互作用,这些蛋白也与MTHFD2共表达,并且在shRNA敲除后产生相似的转录表型,核MTHFD2除了在线粒体叶酸代谢中具有既定功能外,还在RNA代谢和翻译中发挥作用,MTHFD2相互作用蛋白可能提供一种机制,使MTHFD2能够影响基因表达和细胞行为,也许有助于整合叶酸代谢的信息。以上研究表明,MTHFD2通过重新编程糖酵解、叶酸代谢、核酸代谢途径,影响氧化还原稳态,来满足快速增值所需的能量、物质和氧化还原力。

4.3. 亚甲基四氢叶酸还原酶2与肿瘤免疫相关

NK细胞是天然免疫细胞,对肿瘤具有强大的细胞溶解活性,Cui [31]等在对头颈部鳞状细胞癌研究中发现,MTHFD2高表达组中肥大细胞活化和嗜酸性粒细胞比例较高,而MTHFD2低表达组中NK细胞活化、树突状细胞静息和肥大细胞静息比例较高,上调MTHFD2可能导致NK细胞静息增加,NK细胞活化减少,提示MTHFD2可能通过影响NK细胞活性发挥促瘤作用,结果表明MTHFD2可能在调节肿瘤免疫微环境中发挥重要作用。巨噬细胞极化受转录因子、信号级联和代谢重编程的调节,Shang [35]等人通过体内和体外研究,揭示了MTHFD2通过与磷酸脂酶与张力蛋白同源物(Phosphatase and tensin homolog, PTEN)的催化中心相互作用调节PTEN活性,从而重编程巨噬细胞极化,改变巨噬细胞介导的免疫反应。PD-1和PD-L1结合便会向T细胞传递一种负向调控信号,诱导T细胞进入静息状态,减低淋巴结CD8+ T细胞的增生,Wang [36]等研究发现,MTHFD2促进基础和IFN-γ刺激的PD-L1表达,诱导肿瘤免疫逃逸。据Zhu [8]等人报道,MTHFD2的表达与Th2细胞、Th1细胞、巨噬细胞、aDC和Tgd免疫细胞呈正相关,此外还发现几个免疫检查点分子与MTHFD2表达密切相关,包括PDCD1、CD274、CTLA4、CD276、CSF1R、IDO1、LAG3、HAVCR2和TIGIT,研究表明MTHFD2参与了免疫细胞浸润的协调和免疫检查点分子的表达。综上所述,MTHFD2可通过调节免疫细胞浸润、免疫微环境进而调节免疫细胞的功能来参与免疫调节。

5. 亚甲基四氢叶酸还原酶2与肿瘤治疗

一碳单位代谢途径,它从叶酸开始,为DNA甲基化以及包括DNA、RNA和氨基酸合成在内的各种合成代谢途径提供一碳单位,在核酸生物合成和增殖中具有重要作用,MTHFD2是整合嘌呤代谢与致病效应细胞信号的代谢检查点,是一碳代谢途径中的潜在治疗靶点[37]。Ju [30]等研究发现,LY345899是一种叶酸类似物,并作为MTHFD2的抑制剂,在小鼠结肠癌人源异种移植物(patient-derived tumor xenograft, PDX)实验中,LY345899治疗组平均肿瘤重量较其他实验组低,在治疗期间,没有观察到任何小鼠的体重减轻或其他急性或延迟毒性迹象,表明LY345899在体内具有强大的抗肿瘤活性。放射治疗被用作为头颈部鳞状细胞癌的一线治疗方式,Kirtikar Shukla [38]等人发现,MTHFD2的缺失使头颈部鳞状细胞癌对放射治疗显著增敏,并提高β-拉帕醌化疗疗效,研究表明MTHFD2是开发放射增敏化疗药物和β-拉帕醌细胞毒性增强剂的潜在靶点。在Yao [14]等人对肺腺癌的研究中发现,MTHFD2表达与化疗药物培美曲塞耐药之间具有相关性,表明MTHFD2过表达可导致培美曲塞耐药性增加,而MTHFD2敲低可降低培美曲塞耐药性。使用体外功能测定和体内小鼠模型评估MTHFD2抑制剂DS18561882联合恩杂鲁胺的治疗效果,结果表明MTHFD2抑制剂DS18561882与恩杂鲁胺联合使用可显着抑制体外去势抵抗性前列腺癌细胞增殖和体内肿瘤生长[39]。靶向代谢的药物已经成为治疗某些癌症的支柱,Pikman [40]等提出与目前使用的更广泛靶向单碳叶酸代谢的药物相比,靶向MTHFD2可能提供更好的治疗窗口。因此,深入研究MTHFD2对细胞代谢的影响可为有效开发MTHFD2靶向治疗提供新的理念。由此可见,MTHFD2既是一种潜在的药物靶点,也可以在提高放化疗的敏感性中发挥作用。

6. 小结与展望

MTHFD2在正常人组织中几乎不表达,但在多种肿瘤类型中却被发现显著上调,并与肿瘤的侵袭、增值及恶化密切相关,MTHFD2在乳腺癌、肺癌、结肠癌中的表达水平显著上调,而在其他类型癌症(如淋巴瘤)中则可能维持在较低水平。这种差异可能反映了不同癌症类型对叶酸代谢的依赖程度,或是癌细胞在不同微环境中的代谢适应。MTHFD2通过调控PI3K/AKT信号通路、JAK/STAT信号通路、AKT/GSK-3β/β-catenin信号通路,导致肿瘤细胞异常增值和侵袭,信号通路的差异可能为不同癌症类型的特异性治疗提供了新的靶点。MTHFD2通过重新编程糖酵解、叶酸代谢、核酸代谢等途径,支持肿瘤细胞快速增值和生存,此外,MTHFD2还参与调控肿瘤微环境,影响肿瘤细胞与免疫细胞的相互作用,进而影响肿瘤免疫逃逸。MTHFD2可能在不同癌症类型中通过影响肿瘤微环境(如氧气浓度、营养物质可用性等)发挥不同作用。在结肠癌中,高表达的MTHFD2可能增强肿瘤细胞对缺氧环境的适应能力,而在头颈部鳞状细胞中,其作用可能与调节免疫细胞浸润有关,MTHFD2是肿瘤代谢领域具有前景的研究和治疗靶点,尽管MTHFD2在肿瘤发展中的作用已初步探索,但与肿瘤微环境其他分子的相互作用不完全清楚,深入对相关机制的研究,可为靶向治疗提供新理念。MTHFD2相关抑制剂(具有三环香豆素支架的MTHFD2抑制剂DS44960156 [41])已被开发,但其生物安全性仍需进一步研究,研究MTHFD2抑制剂与现有抗肿瘤治疗(放疗、化疗、免疫治疗)的联合治疗策略,可能为提高治疗效果和克服耐药性提供新思路。MTHFD2在肿瘤发生发展中的多重角色,使其成为理解肿瘤代谢网络和开发新型抗肿瘤策略的有力候选靶标。

基金项目

百色市科学研究与技术开发计划(百科20243441)。

NOTES

*通讯作者。

参考文献

[1] Mattiuzzi, C. and Lippi, G. (2019) Current Cancer Epidemiology. Journal of Epidemiology and Global Health, 9, 217-222.
https://doi.org/10.2991/jegh.k.191008.001
[2] Nicolaidou, V., Papaneophytou, C. and Koufaris, C. (2020) Detection and Characterisation of Novel Alternative Splicing Variants of the Mitochondrial Folate Enzyme MTHFD2. Molecular Biology Reports, 47, 7089-7096.
https://doi.org/10.1007/s11033-020-05775-y
[3] Zhao, L.N. and Kaldis, P. (2022) The Catalytic Mechanism of the Mitochondrial Methylenetetrahydrofolate Dehydrogenase/Cyclohydrolase (MTHFD2). PLOS Computational Biology, 18, e1010140.
https://doi.org/10.1371/journal.pcbi.1010140
[4] Scaletti, E.R., Gustafsson Westergren, R., Andersson, Y., Wiita, E., Henriksson, M., Homan, E.J., et al. (2022) The First Structure of Human MTHFD2L and Its Implications for the Development of Isoform‐Selective Inhibitors. ChemMedChem, 17, e202200274.
https://doi.org/10.1002/cmdc.202200274
[5] Wei, Y., Liu, P., Li, Q., Du, J., Chen, Y., Wang, Y., et al. (2019) The Effect of MTHFD2 on the Proliferation and Migration of Colorectal Cancer Cell Lines. OncoTargets and Therapy, 12, 6361-6370.
https://doi.org/10.2147/ott.s210800
[6] Rather, G.M. (2023) Folate Trapping Is Lethal to Cancer Cells. Chemical Biology & Drug Design, 102, 1588-1591.
https://doi.org/10.1111/cbdd.14329
[7] Tedeschi, P.M., Vazquez, A., Kerrigan, J.E. and Bertino, J.R. (2015) Mitochondrial Methylenetetrahydrofolate Dehydrogenase (MTHFD2) Overexpression Is Associated with Tumor Cell Proliferation and Is a Novel Target for Drug Development. Molecular Cancer Research, 13, 1361-1366.
https://doi.org/10.1158/1541-7786.mcr-15-0117
[8] Zhu, L., Liu, X., Zhang, W., Hu, H., Wang, Q. and Xu, K. (2022) MTHFD2 Is a Potential Oncogene for Its Strong Association with Poor Prognosis and High Level of Immune Infiltrates in Urothelial Carcinomas of Bladder. BMC Cancer, 22, Article No. 556.
https://doi.org/10.1186/s12885-022-09606-0
[9] Sun, B., He, Z., Liu, G., Fu, X., Chen, Z. and Li, G. (2021) Methylene Tetrahydrofolate Dehydrogenase 2 (MTHFD2) Is Overexpressed in Head and Neck Squamous Cell Carcinoma (HNSCC) and Correlated with Patient’s Poor Prognosis. Pteridines, 32, 98-105.
https://doi.org/10.1515/pteridines-2020-0033
[10] Liu, X., Huang, Y., Jiang, C., Ou, H., Guo, B., Liao, H., et al. (2016) Methylenetetrahydrofolate Dehydrogenase 2 Overexpression Is Associated with Tumor Aggressiveness and Poor Prognosis in Hepatocellular Carcinoma. Digestive and Liver Disease, 48, 953-960.
https://doi.org/10.1016/j.dld.2016.04.015
[11] He, H., Li, P., Jia, W., Hu, B. and Ji, C. (2020) High Expression of Methylenetetrahydrofolate Dehydrogenase 2 (MTHFD2) in Esophageal Squamous Cell Carcinoma and Its Clinical Prognostic Significance. Medical Science Monitor, 26, e920259.
https://doi.org/10.12659/msm.920259
[12] Arslan, R. and Ceylan, O. (2022) MTHFD2 Expression Profile and Its Prognostic Importance in Invasive Breast Carcinoma. International Journal of Medical Science and Clinical Invention, 9, 6014-5922.
https://doi.org/10.18535/ijmsci/v9i03.08
[13] Shi, L., Zhang, Q., Shou, X. and Niu, H. (2021) Expression and Prognostic Value Identification of Methylenetetrahydrofolate Dehydrogenase 2 (MTHFD2) in Brain Low-Grade Glioma. International Journal of General Medicine, 14, 4517-4527.
https://doi.org/10.2147/ijgm.s323858
[14] Yao, S., Peng, L., Elakad, O., Küffer, S., Hinterthaner, M., Danner, B.C., et al. (2021) One Carbon Metabolism in Human Lung Cancer. Translational Lung Cancer Research, 10, 2523-2538.
https://doi.org/10.21037/tlcr-20-1039
[15] Cui, X., Su, H., Yang, J., Wu, X., Huo, K., Jing, X., et al. (2022) Up-regulation of MTHFD2 Is Associated with Clinicopathological Characteristics and Poor Survival in Ovarian Cancer, Possibly by Regulating MOB1A Signaling. Journal of Ovarian Research, 15, Article No. 23.
https://doi.org/10.1186/s13048-022-00954-w
[16] Zhang, H., Zhu, S., Zhou, H., Li, R., Xia, X. and Xiong, H. (2023) Identification of MTHFD2 as a Prognostic Biomarker and Ferroptosis Regulator in Triple-Negative Breast Cancer. Frontiers in Oncology, 13, Article 1098357.
https://doi.org/10.3389/fonc.2023.1098357
[17] Cao, Y., Dai, Z., Xie, G., Liu, G., Guo, L. and Zhang, J. (2023) A Novel Metabolic-Related Gene Signature for Predicting Clinical Prognosis and Immune Microenvironment in Head and Neck Squamous Cell Carcinoma. Experimental Cell Research, 428, Article ID: 113628.
https://doi.org/10.1016/j.yexcr.2023.113628
[18] Boroughs, L.K. and DeBerardinis, R.J. (2015) Metabolic Pathways Promoting Cancer Cell Survival and Growth. Nature Cell Biology, 17, 351-359.
https://doi.org/10.1038/ncb3124
[19] Wang, J., Yu, Z., Jiang, Y., Le, T., Wu, Y., Li, Z., et al. (2024) Downregulation of MTHFD2 Inhibits Proliferation and Enhances Chemosensitivity in Hepatocellular Carcinoma via PI3K/AKT Pathway. Frontiers in Bioscience-Landmark, 29, 35.
https://doi.org/10.31083/j.fbl2901035
[20] Huang, J., Qin, Y., Lin, C., Huang, X. and Zhang, F. (2021) MTHFD2 Facilitates Breast Cancer Cell Proliferation via the AKT Signaling Pathway. Experimental and Therapeutic Medicine, 22, Article No. 703.
https://doi.org/10.3892/etm.2021.10135
[21] Shi, Y., Xu, Y., Yao, J., Yan, C., Su, H., Zhang, X., et al. (2021) MTHFD2 Promotes Tumorigenesis and Metastasis in Lung Adenocarcinoma by Regulating AKT/GSK‐3β/β‐Catenin Signalling. Journal of Cellular and Molecular Medicine, 25, 7013-7027.
https://doi.org/10.1111/jcmm.16715
[22] Li, Q., Yang, F., Shi, X., Bian, S., Shen, F., Wu, Y., et al. (2021) MTHFD2 Promotes Ovarian Cancer Growth and Metastasis via Activation of the STAT3 Signaling Pathway. FEBS Open Bio, 11, 2845-2857.
https://doi.org/10.1002/2211-5463.13249
[23] Deng, X., Liu, X., Hu, B., Liu, J., Fu, B. and Zhang, W. (2022) Upregulation of MTHFD2 Is Associated with PDL1 Activation in Bladder Cancer via the PI3K/AKT Pathway. International Journal of Molecular Medicine, 51, Article No. 14.
https://doi.org/10.3892/ijmm.2022.5217
[24] Wu, S., Cai, W., Shi, Z., Ming, X., Yang, X., Zhou, Y., et al. (2022) Knockdown of MTHFD2 Inhibits Proliferation and Migration of Nasopharyngeal Carcinoma Cells through the ERK Signaling Pathway. Biochemical and Biophysical Research Communications, 614, 47-55.
https://doi.org/10.1016/j.bbrc.2022.05.007
[25] Mo, X., Liu, Q., Liang, K. and Song, Y. (2024) Interference with MTHFD2 Induces Ferroptosis in Ovarian Cancer Cells through ERK Signaling to Suppress Tumor Malignant Progression. Journal of Bioenergetics and Biomembranes, 56, 333-345.
https://doi.org/10.1007/s10863-024-10014-1
[26] Zhou, F., Yuan, Z., Gong, Y., Li, L., Wang, Y., Wang, X., et al. (2023) Pharmacological Targeting of MTHFD2 Suppresses NSCLC via the Regulation of ILK Signaling Pathway. Biomedicine & Pharmacotherapy, 161, Article ID: 114412.
https://doi.org/10.1016/j.biopha.2023.114412
[27] Yue, L., Pei, Y., Zhong, L., Yang, H., Wang, Y., Zhang, W., et al. (2020) MTHFD2 Modulates Mitochondrial Function and DNA Repair to Maintain the Pluripotency of Mouse Stem Cells. Stem Cell Reports, 15, 529-545.
https://doi.org/10.1016/j.stemcr.2020.06.018
[28] Liu, X., Liu, S., Piao, C., Zhang, Z., Zhang, X., Jiang, Y., et al. (2021) Non‐Metabolic Function of MTHFD2 Activates CDK2 in Bladder Cancer. Cancer Science, 112, 4909-4919.
https://doi.org/10.1111/cas.15159
[29] Koufaris, C., Gallage, S., Yang, T., Lau, C., Valbuena, G.N. and Keun, H.C. (2016) Suppression of MTHFD2 in MCF-7 Breast Cancer Cells Increases Glycolysis, Dependency on Exogenous Glycine, and Sensitivity to Folate Depletion. Journal of Proteome Research, 15, 2618-2625.
https://doi.org/10.1021/acs.jproteome.6b00188
[30] Ju, H., Lu, Y., Chen, D., Zuo, Z., Liu, Z., Wu, Q., et al. (2018) Modulation of Redox Homeostasis by Inhibition of MTHFD2 in Colorectal Cancer: Mechanisms and Therapeutic Implications. JNCI: Journal of the National Cancer Institute, 111, 584-596.
https://doi.org/10.1093/jnci/djy160
[31] Cui, L., Chen, H. and Zhao, X. (2020) The Prognostic Significance of Immune-Related Metabolic Enzyme MTHFD2 in Head and Neck Squamous Cell Carcinoma. Diagnostics, 10, Article 689.
https://doi.org/10.3390/diagnostics10090689
[32] Wang, W., Gu, W., Tang, H., Mai, Z., Xiao, H., Zhao, J., et al. (2022) The Emerging Role of MTHFD Family Genes in Regulating the Tumor Immunity of Oral Squamous Cell Carcinoma. Journal of Oncology, 2022, Article ID: 4867730.
https://doi.org/10.1155/2022/4867730
[33] Green, N.H., Galvan, D.L., Badal, S.S., Chang, B.H., LeBleu, V.S., Long, J., et al. (2019) MTHFD2 Links RNA Methylation to Metabolic Reprogramming in Renal Cell Carcinoma. Oncogene, 38, 6211-6225.
https://doi.org/10.1038/s41388-019-0869-4
[34] Koufaris, C. and Nilsson, R. (2018) Protein Interaction and Functional Data Indicate MTHFD2 Involvement in RNA Processing and Translation. Cancer & Metabolism, 6, Article No. 12.
https://doi.org/10.1186/s40170-018-0185-4
[35] Shang, M., Ni, L., Shan, X., Cui, Y., Hu, P., Ji, Z., et al. (2023) MTHFD2 Reprograms Macrophage Polarization by Inhibiting PTEN. Cell Reports, 42, Article ID: 112481.
https://doi.org/10.1016/j.celrep.2023.112481
[36] Shang, M., Yang, H., Yang, R., Chen, T., Fu, Y., Li, Y., et al. (2021) The Folate Cycle Enzyme MTHFD2 Induces Cancer Immune Evasion through PD-L1 Up-Regulation. Nature Communications, 12, Article No. 1940.
https://doi.org/10.1038/s41467-021-22173-5
[37] Sugiura, A., Andrejeva, G., Voss, K., Heintzman, D.R., Xu, X., Madden, M.Z., et al. (2022) MTHFD2 Is a Metabolic Checkpoint Controlling Effector and Regulatory T Cell Fate and Function. Immunity, 55, 65-81.e9.
https://doi.org/10.1016/j.immuni.2021.10.011
[38] Shukla, K., Singh, N., Lewis, J.E., Tsang, A.W., Boothman, D.A., Kemp, M.L., et al. (2020) MTHFD2 Blockade Enhances the Efficacy of β-Lapachone Chemotherapy with Ionizing Radiation in Head and Neck Squamous Cell Cancer. Frontiers in Oncology, 10, Article 536377.
https://doi.org/10.3389/fonc.2020.536377
[39] Zhao, R., Feng, T., Gao, L., Sun, F., Zhou, Q., Wang, X., et al. (2022) PPFIA4 Promotes Castration-Resistant Prostate Cancer by Enhancing Mitochondrial Metabolism through MTHFD2. Journal of Experimental & Clinical Cancer Research, 41, Article No. 125.
https://doi.org/10.1186/s13046-022-02331-3
[40] Pikman, Y., Puissant, A., Alexe, G., Furman, A., Chen, L.M., Frumm, S.M., et al. (2016) Targeting MTHFD2 in Acute Myeloid Leukemia. The Journal of Cell Biology, 214, 2141OIA135.
https://doi.org/10.1083/jcb.2141oia135
[41] Kawai, J., Ota, M., Ohki, H., Toki, T., Suzuki, M., Shimada, T., et al. (2019) Structure-Based Design and Synthesis of an Isozyme-Selective MTHFD2 Inhibitor with a Tricyclic Coumarin Scaffold. ACS Medicinal Chemistry Letters, 10, 893-898.
https://doi.org/10.1021/acsmedchemlett.9b00069