[1]
|
Mensah, G.A., Fuster, V., Murray, C.J.L., et al. (2023) Global Burden of Cardiovascular Diseases and Risks, 1990-2022. Journal of the American College of Cardiology, 82, 2350-2473.
|
[2]
|
Mensah, G.A., Fuster, V. and Roth, G.A. (2023) A Heart-Healthy and Stroke-Free World: Using Data to Inform Global Action. Journal of the American College of Cardiology, 82, 2343-2349. https://doi.org/10.1016/j.jacc.2023.11.003
|
[3]
|
中国心血管健康与疾病报告编写组. 中国心血管健康与疾病报告2022概要[J]. 中国循环杂志, 2023, 38(6): 583-612.
|
[4]
|
Chen, H., Moreno-Moral, A., Pesce, F., Devapragash, N., Mancini, M., Heng, E.L., et al. (2019) WWP2 Regulates Pathological Cardiac Fibrosis by Modulating SMAD2 Signaling. Nature Communications, 10, Article No. 3616. https://doi.org/10.1038/s41467-019-11551-9
|
[5]
|
Tallquist, M.D. and Molkentin, J.D. (2017) Redefining the Identity of Cardiac Fibroblasts. Nature Reviews Cardiology, 14, 484-491. https://doi.org/10.1038/nrcardio.2017.57
|
[6]
|
吕晓蕾, 赵培, 张振刚. 心肌纤维化: 一个慢性炎症反应过程[J]. 中国组织工程研究与临床康复, 2007(51): 10416-10420.
|
[7]
|
Keiichi, T., Katherine, E., Yuki, N., et al. (2024) Cardiac and Perivascular Myofibroblasts, Matrifibrocytes, and Immune Fibrocytes in Hypertension; Commonalities and Differences with Other Cardiovascular Diseases. Cardiovascular Research, 120, 567-580.
|
[8]
|
Meng, X., Nikolic-Paterson, D.J. and Lan, H.Y. (2016) TGF-β: The Master Regulator of Fibrosis. Nature Reviews Nephrology, 12, 325-338. https://doi.org/10.1038/nrneph.2016.48
|
[9]
|
Rahmutula, D., Zhang, H., Wilson, E.E. and Olgin, J.E. (2018) Absence of Natriuretic Peptide Clearance Receptor Attenuates TGF-β1-Induced Selective Atrial Fibrosis and Atrial Fibrillation. Cardiovascular Research, 115, 357-372. https://doi.org/10.1093/cvr/cvy224
|
[10]
|
Gramley, F., Lorenzen, J., Koellensperger, E., Kettering, K., Weiss, C. and Munzel, T. (2010) Atrial Fibrosis and Atrial Fibrillation: The Role of the TGF-β1 Signaling Pathway. International Journal of Cardiology, 143, 405-413. https://doi.org/10.1016/j.ijcard.2009.03.110
|
[11]
|
Derynck, R. and Zhang, Y.E. (2003) Smad-Dependent and Smad-Independent Pathways in TGF-β Family Signalling. Nature, 425, 577-584. https://doi.org/10.1038/nature02006
|
[12]
|
Hu, H., Chen, D., Wang, Y., Feng, Y., Cao, G., Vaziri, N.D., et al. (2018) New Insights into TGF-β/Smad Signaling in Tissue Fibrosis. Chemico-Biological Interactions, 292, 76-83. https://doi.org/10.1016/j.cbi.2018.07.008
|
[13]
|
Santibañez, J.F., Quintanilla, M. and Bernabeu, C. (2011) TGF-β/TGF-β Receptor System and Its Role in Physiological and Pathological Conditions. Clinical Science, 121, 233-251. https://doi.org/10.1042/cs20110086
|
[14]
|
Xiao, M., Zhang, M., Bie, M., Wang, X., Guo, J. and Xiao, H. (2020) Galectin-3 Induces Atrial Fibrosis by Activating the TGF-β1/Smad Pathway in Patients with Atrial Fibrillation. Cardiology, 145, 446-455. https://doi.org/10.1159/000506072
|
[15]
|
Walton, K.L., Johnson, K.E. and Harrison, C.A. (2017) Targeting TGF-β Mediated SMAD Signaling for the Prevention of Fibrosis. Frontiers in Pharmacology, 8, Article 461. https://doi.org/10.3389/fphar.2017.00461
|
[16]
|
Zhao, J., Chen, Y., Chen, Q., Hong, T., Zhong, Z., He, J., et al. (2022) Curcumin Ameliorates Cardiac Fibrosis by Regulating Macrophage-Fibroblast Crosstalk via IL18-P-SMAD2/3 Signaling Pathway Inhibition. Frontiers in Pharmacology, 12, Article 784041. https://doi.org/10.3389/fphar.2021.784041
|
[17]
|
Engebretsen, K.V.T., Skårdal, K., Bjørnstad, S., Marstein, H.S., Skrbic, B., Sjaastad, I., et al. (2014) Attenuated Development of Cardiac Fibrosis in Left Ventricular Pressure Overload by SM16, an Orally Active Inhibitor of Alk5. Journal of Molecular and Cellular Cardiology, 76, 148-157. https://doi.org/10.1016/j.yjmcc.2014.08.008
|
[18]
|
González, A., López, B., Ravassa, S., San José, G., Latasa, I., Butler, J., et al. (2024) Myocardial Interstitial Fibrosis in Hypertensive Heart Disease: From Mechanisms to Clinical Management. Hypertension, 81, 218-228. https://doi.org/10.1161/hypertensionaha.123.21708
|
[19]
|
Chen, H., Song, H., Liu, X., Tian, J., Tang, W., Cao, T., et al. (2017) Buyanghuanwu Decoction Alleviated Pressure Overload Induced Cardiac Remodeling by Suppressing TGF-β/Smads and MAPKs Signaling Activated Fibrosis. Biomedicine & Pharmacotherapy, 95, 461-468. https://doi.org/10.1016/j.biopha.2017.08.102
|
[20]
|
李佳莘, 朱晓雨, 鲁美丽, 等. 黄芪甲苷对大鼠心肌纤维化的影响[J]. 中药药理与临床, 2016, 32(5): 42-45.
|
[21]
|
李佳莘, 朱晓雨, 鲁美丽, 等. 电针与黄芪甲苷结合对大鼠心肌纤维化的影响[J]. 针刺研究, 2017, 42(6): 477-481.
|
[22]
|
Wei, Y., Wu, Y., Feng, K., Zhao, Y., Tao, R., Xu, H., et al. (2020) Astragaloside IV Inhibits Cardiac Fibrosis via miR-135a-TRPM7-TGF-β/Smads Pathway. Journal of Ethnopharmacology, 249, Article ID: 112404. https://doi.org/10.1016/j.jep.2019.112404
|
[23]
|
张石在, 王毅, 马瑞莲, 等. 黄芪多糖抑制TGF-β1和Nox4/Akt/mTOR信号通路保护心肌重构的作用研究[J]. 中国现代应用药学, 2021, 38(24): 3108-3114.
|
[24]
|
冯博, 房玉涛, 徐瑞山. 桂枝汤的现代临床应用及作用机制研究进展[J]. 中国中药杂志, 2018, 43(12): 2442-2447.
|
[25]
|
袁海建, 李卫, 金建明, 等. 桂枝汤化学成分、药理作用机制与临床应用研究进展[J]. 中国中药杂志, 2017, 42(23): 4556-4564.
|
[26]
|
陈纪烨, 周国锋, 王永成, 等. 桂枝汤桂枝-白芍不同比例配伍通过调节TGF-β1/Smads信号通路及慢性炎症改善盐敏感高血压大鼠心肌纤维化[J]. 中国实验方剂学杂志, 2020, 26(1): 50-58.
|
[27]
|
Su, C., Wang, Q., Luo, H., Jiao, W., Tang, J., Li, L., et al. (2020) Si-Miao-Yong-An Decoction Attenuates Cardiac Fibrosis via Suppressing TGF-β1 Pathway and Interfering with MMP-TIMPs Expression. Biomedicine & Pharmacotherapy, 127, Article ID: 110132. https://doi.org/10.1016/j.biopha.2020.110132
|
[28]
|
Lee, H.L., Kim, J.M., Go, M.J., Kim, T.Y., Joo, S.G., Kim, J.H., et al. (2023) Protective Effect of Lonicera Japonica on PM2.5-Induced Pulmonary Damage in BALB/c Mice via the TGF-β and NF-κB Pathway. Antioxidants, 12, Article 968. https://doi.org/10.3390/antiox12040968
|
[29]
|
Hui, M., Yi, Z., Zhenlin, H., et al. (2019) Lonicera Japonica Attenuates Carbon Tetrachloride-Induced Liver Fibrosis in Mice: Molecular Mechanisms of Action. The American Journal of Chinese Medicine, 47, 351-367.
|
[30]
|
Tan, Z., Jiang, X., Zhou, W., Deng, B., Cai, M., Deng, S., et al. (2021) Taohong Siwu Decoction Attenuates Myocardial Fibrosis by Inhibiting Fibrosis Proliferation and Collagen Deposition via TGFBR1 Signaling Pathway. Journal of Ethnopharmacology, 270, Article ID: 113838. https://doi.org/10.1016/j.jep.2021.113838
|
[31]
|
Liu, X., Chen, K., Zhuang, Y., Huang, Y., Sui, Y., Zhang, Y., et al. (2019) Paeoniflorin Improves Pressure Overload-Induced Cardiac Remodeling by Modulating the MAPK Signaling Pathway in Spontaneously Hypertensive Rats. Biomedicine & Pharmacotherapy, 111, 695-704. https://doi.org/10.1016/j.biopha.2018.12.090
|
[32]
|
Wang, L., Shi, H., Huang, J., Xu, S. and Liu, P. (2019) Linggui Zhugan Decoction (苓桂术甘汤) Inhibits Ventricular Remodeling after Acute Myocardial Infarction in Rats by Suppressing TGF-β1/Smad Signaling Pathway. Chinese Journal of Integrative Medicine, 26, 345-352. https://doi.org/10.1007/s11655-018-3024-0
|
[33]
|
Zhang, X., Shao, C., Cheng, S., Zhu, Y., Liang, B. and Gu, N. (2021) Effect of Guanxin V in Animal Model of Acute Myocardial Infarction. BMC Complementary Medicine and Therapies, 21, Article No. 72. https://doi.org/10.1186/s12906-021-03211-7
|
[34]
|
Liang, B., Zhang, X., Li, R. and Gu, N. (2022) Guanxin V Protects against Ventricular Remodeling after Acute Myocardial Infarction through the Interaction of TGF-β1 and Vimentin. Phytomedicine, 95, Article ID: 153866. https://doi.org/10.1016/j.phymed.2021.153866
|
[35]
|
Shen, Z., Shen, A., Chen, X., Wu, X., Chu, J., Cheng, Y., et al. (2020) Huoxin Pill Attenuates Myocardial Infarction-Induced Apoptosis and Fibrosis via Suppression of P53 and TGF-β1/Smad2/3 Pathways. Biomedicine & Pharmacotherapy, 130, Article ID: 110618. https://doi.org/10.1016/j.biopha.2020.110618
|
[36]
|
Li, C., Zhang, J., Hu, W. and Li, S. (2020) Atrial Fibrosis Underlying Atrial Fibrillation (Review). International Journal of Molecular Medicine, 47, Article No. 9. https://doi.org/10.3892/ijmm.2020.4842
|
[37]
|
Tan, A.Y. and Zimetbaum, P. (2010) Atrial Fibrillation and Atrial Fibrosis. Journal of Cardiovascular Pharmacology. https://doi.org/10.1097/fjc.0b013e318207a572
|
[38]
|
颜晓睿, 吴启华, 赵帅, 等. 基于“痰瘀生风”理论研究中药复方调控TGF-β1/Smad2/3/α-SMA信号通路治疗痰浊血瘀型PAF的机制研究[J]. 时珍国医国药, 2023, 34(6): 1334-1337.
|
[39]
|
Huang, X.Y. and Chen, C.X. (2013) Effect of Oxymatrine, the Active Component from Radix Sophorae flavescentis (Kushen), on Ventricular Remodeling in Spontaneously Hypertensive Rats. Phytomedicine, 20, 202-212. https://doi.org/10.1016/j.phymed.2012.10.012
|
[40]
|
Ma, J., Ma, S., Yin, C. and Wu, H. (2018) Matrine Reduces Susceptibility to Postinfarct Atrial Fibrillation in Rats Due to Antifibrotic Properties. Journal of Cardiovascular Electrophysiology, 29, 616-627. https://doi.org/10.1111/jce.13448
|
[41]
|
Siebermair, J., Kholmovski, E.G. and Marrouche, N. (2017) Assessment of Left Atrial Fibrosis by Late Gadolinium Enhancement Magnetic Resonance Imaging. JACC: Clinical Electrophysiology, 3, 791-802. https://doi.org/10.1016/j.jacep.2017.07.004
|
[42]
|
Ma, J., Ren, M., Li, J., Zheng, C., Chen, Q. and Ma, S. (2022) Danqi Soft Caspule Prevents Atrial Fibrillation by Ameliorating Left Atrial Remodeling through Inhibiting Cardiac Fibroblasts Differentiation and Function. Phytomedicine, 101, Article ID: 154134. https://doi.org/10.1016/j.phymed.2022.154134
|
[43]
|
Shi, Y.J., Liu, C.Q., Xiong, S., et al. (2023) Ling-Gui-Qi-Hua Formula Alleviates Left Ventricular Myocardial Fibrosis in Rats with Heart Failure with Preserved Ejection Fraction by Blocking the Transforming Growth Factor-β1/Smads Signaling Pathway. Journal of Ethnopharmacology, 317, Article ID: 116849.
|
[44]
|
Zhang, S., Liu, H., Fang, Q., He, H., Lu, X., Wang, Y., et al. (2021) Shexiang Tongxin Dropping Pill Protects against Chronic Heart Failure in Mice via Inhibiting the ERK/MAPK and TGF-β Signaling Pathways. Frontiers in Pharmacology, 12, Article 796354. https://doi.org/10.3389/fphar.2021.796354
|
[45]
|
Kaur, A. and Bhatti, R. (2021) Understanding the Phytochemistry and Molecular Insights to the Pharmacology of Angelica archangelica L. (Garden Angelica) and Its Bioactive Components. Phytotherapy Research, 35, 5961-5979. https://doi.org/10.1002/ptr.7206
|
[46]
|
Song, X., Kong, J., Song, J., Pan, R. and Wang, L. (2021) Angelica Sinensis Polysaccharide Alleviates Myocardial Fibrosis and Oxidative Stress in the Heart of Hypertensive Rats. Computational and Mathematical Methods in Medicine, 2021, Article ID: 6710006. https://doi.org/10.1155/2021/6710006
|
[47]
|
Xu, W.Q., Lyu, W., Duan, C.C., et al. (2023) Preparation and Bioactivity of the Rare Ginsenosides Rg3 and Rh2: An Updated Review. Fitoterapia, 167, Article ID: 105514.
|
[48]
|
Fan, X., Xu, Y., Zhu, D. and Ji, Y. (2017) Pharmacokinetic Comparison of 20(R)‐ and 20(s)‐Ginsenoside Rh1 and 20(R)‐ and 20(s)‐Ginsenoside Rg3 in Rat Plasma Following Oral Administration of Radix Ginseng Rubra and Sheng‐Mai‐San Extracts. Evidence-Based Complementary and Alternative Medicine, 2017, Article ID: 6451963. https://doi.org/10.1155/2017/6451963
|
[49]
|
Xu, H., Miao, H., Chen, G., Zhang, G., Hua, Y., Wu, Y., et al. (2023) 20(s)-Ginsenoside Rg3 Exerts Anti-Fibrotic Effect after Myocardial Infarction by Alleviation of Fibroblasts Proliferation and Collagen Deposition through TGFBR1 Signaling Pathways. Journal of Ginseng Research, 47, 743-754. https://doi.org/10.1016/j.jgr.2023.06.007
|
[50]
|
Xing, Z.W., Yang, C., Feng, Y.Q., et al. (2023) Understanding Aconite’s Anti-Fibrotic Effects in Cardiac Fibrosis. Phytomedicine, 122, Article ID: 155112.
|
[51]
|
Shahid, S., Kim, G., Johnson, N.R., Wafula, E., Wang, F., Coruh, C., et al. (2018) MicroRNAs from the Parasitic Plant Cuscuta Campestris Target Host Messenger RNAs. Nature, 553, 82-85. https://doi.org/10.1038/nature25027
|
[52]
|
Tingting, Z., Yu, Z., Si, L., et al. (2023) Gentianella Acuta-Derived Gen-miR-1 Suppresses Myocardial Fibrosis by Targeting HAX1/HMG20A/Smads Axis to Attenuate Inflammation in Cardiac Fibroblasts. Phytomedicine, 118, Article ID: 154923.
|