[1]
|
GBD 2017 Disease and Injury Incidence and Prevalence Collaborators (2018) Global, Regional, and National Incidence, Prevalence, and Years Lived with Disability for 354 Diseases and Injuries for 195 Countries and Territories, 1990-2017: A Systematic Analysis for the Global Burden of Disease Study 2017. The Lancet, 392, 1789-1858.
|
[2]
|
Aliberti, S., Dela Cruz, C.S., Amati, F., Sotgiu, G. and Restrepo, M.I. (2021) Community-Acquired Pneumonia. The Lancet, 398, 906-919. https://doi.org/10.1016/s0140-6736(21)00630-9
|
[3]
|
Dinh, A., Duran, C., Ropers, J., et al. (2021) Factors Associated with Treatment Failure in Moderately Severe Community-Acquired Pneumonia: A Secondary Analysis of a Randomized Clinical Trial. JAMA Network Open, 4, e2129566.
|
[4]
|
李重锦, 苏新星, 蒋丽君, 等. 重症肺炎患儿预后的危险因素及其列线图预测模型构建研究[J]. 实用心脑肺血管病杂志, 2021, 29(9): 47-52.
|
[5]
|
殷菲. 影响重症肺炎患者预后的相关因素分析及构建Nomogram预测模型的价值研究[J]. 临床急诊杂志, 2020, 21(10): 819-825.
|
[6]
|
刘佳琦, 曾炳亮, 陈会, 等. 基于CT影像组学建立肺孢子菌肺炎的预后模型[J]. 江西医药, 2023, 58(9): 1022-1025.
|
[7]
|
Collins, G.S., Moons, K.G.M., Dhiman, P., et al. (2024) TRIPOD+AI Statement: Updated Guidance for Reporting Clinical Prediction Models that Use Regression or Machine Learning Methods. British Medical Journal, 385, e078378.
|
[8]
|
Wei, J., Cao, H., Peng, M., Zhang, Y., Li, S., Ma, W., et al. (2025) An Interpretable Machine Learning Model for Predicting In-Hospital Mortality in ICU Patients with Ventilator-Associated Pneumonia. PLOS ONE, 20, e0316526. https://doi.org/10.1371/journal.pone.0316526
|
[9]
|
罗松平, 刘单霞, 韦兆吉, 等. 重症肺炎行有创机械通气患者ICU死亡的多因素分析及风险模型建立[J]. 中国急救医学, 2023, 43(4): 268-272.
|
[10]
|
Riley, R.D., Ensor, J., Snell, K.I.E., Harrell, F.E., Martin, G.P., Reitsma, J.B., et al. (2020) Calculating the Sample Size Required for Developing a Clinical Prediction Model. British Medical Journal, 368, m441. https://doi.org/10.1136/bmj.m441
|
[11]
|
Chen, R., Chen, J., Yang, S., Luo, S., Xiao, Z., Lu, L., et al. (2023) Prediction of Prognosis in COVID-19 Patients Using Machine Learning: A Systematic Review and Meta-Analysis. International Journal of Medical Informatics, 177, Article 105151. https://doi.org/10.1016/j.ijmedinf.2023.105151
|
[12]
|
金静怡, 王丽华, 季建红. ICU呼吸机相关性肺炎风险预测模型的研究进展[J]. 当代护士(上旬刊), 2024, 31(8): 13-17.
|
[13]
|
苗若琪, 乔瑞萍. 基于数据挖掘技术的社区获得性肺炎患病风险预测模型的构建[J]. 郑州大学学报(医学版), 2023, 58(3): 306-310.
|
[14]
|
Wang, B., Li, Y., Tian, Y., Ju, C., Xu, X. and Pei, S. (2023) Novel Pneumonia Score Based on a Machine Learning Model for Predicting Mortality in Pneumonia Patients on Admission to the Intensive Care Unit. Respiratory Medicine, 217, Article 107363. https://doi.org/10.1016/j.rmed.2023.107363
|
[15]
|
蔡佩良, 刘超武, 朱振刚, 等. 基于人工智能构建非危重型新型冠状病毒肺炎的中医辅助决策模型[J]. 中国中医急症, 2024, 33(3): 399-404.
|
[16]
|
曾梦, 赵娜, 王显棋, 等. 基于胸部CT图像的肺炎深度学习分类预测模型[J]. 陆军军医大学学报, 2023, 45(21): 2266-2274.
|
[17]
|
Xiang, B., Liu, Y., Jiao, S., Zhang, W., Wang, S. and Yi, M. (2024) Development and Validation of Interpretable Machine Learning Models for Postoperative Pneumonia Prediction. Frontiers in Public Health, 12, Article 1468504. https://doi.org/10.3389/fpubh.2024.1468504
|
[18]
|
吴明翠, 王若雁, 张莉, 等. 肺超声、X线联合实验室指标预测新型冠状病毒肺炎危重型患者预后的临床价值[J]. 临床超声医学杂志, 2024, 26(5): 370-374.
|
[19]
|
王彤, 季达峰. 老年重症肺炎的危险因素及诊断与治疗进展[J]. 现代医学与健康研究电子杂志, 2023, 7(24): 37-40.
|
[20]
|
李欣昱, 武轶群, 林连君. 社区获得性肺炎远期死亡风险的研究进展[J]. 国际老年医学杂志, 2023, 44(1): 99-101.
|
[21]
|
颜宇飞, 刘明利, 金一鸣, 等. 新型冠状病毒肺炎患者血液NLR, DD和CRP水平联合检测对死亡风险的评估研究[J]. 现代检验医学杂志, 2021, 36(1): 92-95+164.
|
[22]
|
Misra, N.K., Das, S., Satpathy, S., Addula, S.R. and Trivedi, M.C. (2024) COVID-19 Pandemic: A Worldwide Critical Review with the Machine Learning Model-Based Prediction. Journal of the Institution of Engineers (India): Series B, 106, 339-349. https://doi.org/10.1007/s40031-024-01155-3
|
[23]
|
Rostami, A., Mousavi, F., Javadinia, S.A., Robatjazi, M. and Mehrpouyan, M. (2024) Predictive Value of Machine Learning Models in Mortality of Coronavirus Disease 2019 (COVID-19) Pneumonia. International Journal of Computational Intelligence Systems, 17, Article No. 221. https://doi.org/10.1007/s44196-024-00633-2
|
[24]
|
Alhassoon, K., Alhsaon, M.A., Alsunaydih, F., Alsaleem, F., Salim, O., Aly, S., et al. (2024) Machine Learning Predictive Modeling of the Persistence of Post-Covid19 Disorders: Loss of Smell and Taste as Case Studies. Heliyon, 10, e35246. https://doi.org/10.1016/j.heliyon.2024.e35246
|
[25]
|
Malin, B., Karp, D. and Scheuermann, R.H. (2010) Technical and Policy Approaches to Balancing Patient Privacy and Data Sharing in Clinical and Translational Research. Journal of Investigative Medicine, 58, 11-18. https://doi.org/10.2310/jim.0b013e3181c9b2ea
|
[26]
|
Brauneck, A., Schmalhorst, L., Kazemi Majdabadi, M.M., Bakhtiari, M., Völker, U., Baumbach, J., et al. (2023) Federated Machine Learning, Privacy-Enhancing Technologies, and Data Protection Laws in Medical Research: Scoping Review. Journal of Medical Internet Research, 25, e41588. https://doi.org/10.2196/41588
|
[27]
|
Moshawrab, M., Adda, M., Bouzouane, A., Ibrahim, H. and Raad, A. (2023) Reviewing Federated Machine Learning and Its Use in Diseases Prediction. Sensors, 23, Article 2112. https://doi.org/10.3390/s23042112
|
[28]
|
Wang, M., Li, W., Wang, H. and Song, P. (2024) Development and Validation of Machine Learning-Based Models for Predicting Healthcare-Associated Bacterial/Fungal Infections among COVID-19 Inpatients: A Retrospective Cohort Study. Antimicrobial Resistance & Infection Control, 13, Article No. 42. https://doi.org/10.1186/s13756-024-01392-7
|
[29]
|
Wang, T., Zhao, Z., Li, W., Wu, J., Ye, Q. and Xie, H. (2023) Machine Learning Predictive Modeling for the Identification of Moderate Coronavirus Disease 2019 during the Pandemic: A Retrospective Study. Cureus, 15, e50619e50619. https://doi.org/10.7759/cureus.50619
|
[30]
|
Ohno, Y., Aoki, T., Endo, M., Koyama, H., Moriya, H., Okada, F., et al. (2023) Machine Learning-Based Computer-Aided Simple Triage (CAST) for COVID-19 Pneumonia as Compared with Triage by Board-Certified Chest Radiologists. Japanese Journal of Radiology, 42, 276-290. https://doi.org/10.1007/s11604-023-01495-y
|
[31]
|
Ismaeel, N.Q., Mohammed, H.J., Chaloob, I.Z., Kwekha-Rashid, A.S., Alhayani, B., Alkhayyat, A., et al. (2023) Application of Healthcare Management Technologies for COVID-19 Pandemic Using Internet of Things and Machine Learning Algorithms. Wireless Personal Communications, 122. https://doi.org/10.1007/s11277-023-10663-2
|