[1]
|
Holden, B.A., Fricke, T.R., Wilson, D.A., Jong, M., Naidoo, K.S., Sankaridurg, P., et al. (2016) Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology, 123, 1036-1042. https://doi.org/10.1016/j.ophtha.2016.01.006
|
[2]
|
Fricke, T.R., Jong, M., Naidoo, K.S., Sankaridurg, P., Naduvilath, T.J., Ho, S.M., et al. (2018) Global Prevalence of Visual Impairment Associated with Myopic Macular Degeneration and Temporal Trends from 2000 through 2050: Systematic Review, Meta-Analysis and Modelling. British Journal of Ophthalmology, 102, 855-862. https://doi.org/10.1136/bjophthalmol-2017-311266
|
[3]
|
Liu, Y., Wang, L., Xu, Y., Pang, Z. and Mu, G. (2021) The Influence of the Choroid on the Onset and Development of Myopia: From Perspectives of Choroidal Thickness and Blood Flow. Acta Ophthalmologica, 99, 730-738. https://doi.org/10.1111/aos.14773
|
[4]
|
Wu, Q., Chen, Q., Lin, B., Huang, S., Wang, Y., Zhang, L., et al. (2020) Relationships among Retinal/Choroidal Thickness, Retinal Microvascular Network and Visual Field in High Myopia. Acta Ophthalmologica, 98, e709-e714. https://doi.org/10.1111/aos.14372
|
[5]
|
De Oliveira, P.R.C., Berger, A.R. and Chow, D.R. (2017) Optical Coherence Tomography Angiography in Chorioretinal Disorders. Canadian Journal of Ophthalmology, 52, 125-136. https://doi.org/10.1016/j.jcjo.2016.07.015
|
[6]
|
Ostrin, L.A., Harb, E., Nickla, D.L., Read, S.A., Alonso-Caneiro, D., Schroedl, F., et al. (2023) IMI—The Dynamic Choroid: New Insights, Challenges, and Potential Significance for Human Myopia. Investigative Opthalmology & Visual Science, 64, Article 4. https://doi.org/10.1167/iovs.64.6.4
|
[7]
|
Thomson, K., Kelly, T., Karouta, C., Morgan, I. and Ashby, R. (2021) Insights into the Mechanism by Which Atropine Inhibits Myopia: Evidence against Cholinergic Hyperactivity and Modulation of Dopamine Release. British Journal of Pharmacology, 178, 4501-4517. https://doi.org/10.1111/bph.15629
|
[8]
|
Wallman, J. and Winawer, J. (2004) Homeostasis of Eye Growth and the Question of Myopia. Neuron, 43, 447-468. https://doi.org/10.1016/j.neuron.2004.08.008
|
[9]
|
Hirata, A. and Negi, A. (1998) Morphological Changes of Choriocapillaris in Experimentally Induced Chick Myopia. Graefe’s Archive for Clinical and Experimental Ophthalmology, 236, 132-137. https://doi.org/10.1007/s004170050053
|
[10]
|
Shih, Y., Fitzgerald, M.E.C., Norton, T.T., Gamlin, P.D.R., Hodos, W. and Reiner, A. (1993) Reduction in Choroidal Blood Flow Occurs in Chicks Wearing Goggles That Induce Eye Growth toward Myopia. Current Eye Research, 12, 219-227. https://doi.org/10.3109/02713689308999467
|
[11]
|
Zhu, X., Park, T.W., Winawer, J. and Wallman, J. (2005) In a Matter of Minutes, the Eye Can Know Which Way to Grow. Investigative Opthalmology & Visual Science, 46, 2238. https://doi.org/10.1167/iovs.04-0956
|
[12]
|
Zhang, S., Zhang, G., Zhou, X., Xu, R., Wang, S., Guan, Z., et al. (2019) Changes in Choroidal Thickness and Choroidal Blood Perfusion in Guinea Pig Myopia. Investigative Opthalmology & Visual Science, 60, Article 3074. https://doi.org/10.1167/iovs.18-26397
|
[13]
|
Prousali, E., Dastiridou, A., Ziakas, N., Androudi, S. and Mataftsi, A. (2021) Choroidal Thickness and Ocular Growth in Childhood. Survey of Ophthalmology, 66, 261-275. https://doi.org/10.1016/j.survophthal.2020.06.008
|
[14]
|
Xu, M., Yu, X., Wan, M., Feng, K., Zhang, J., Shen, M., et al. (2022) Two-Year Longitudinal Change in Choroidal and Retinal Thickness in School-Aged Myopic Children: Exploratory Analysis of Clinical Trials for Myopia Progression. Eye and Vision, 9, Article No. 5. https://doi.org/10.1186/s40662-022-00276-4
|
[15]
|
Wallman, J., Wildsoet, C., Xu, A., Gottlieb, M.D., Nickla, D.L., Marran, L., et al. (1995) Moving the Retina: Choroidal Modulation of Refractive State. Vision Research, 35, 37-50. https://doi.org/10.1016/0042-6989(94)e0049-q
|
[16]
|
Teberik, K. and Kaya, M. (2017) Retinal and Choroidal Thickness in Patients with High Myopia without Maculopathy. Pakistan Journal of Medical Sciences, 33, 1438-1443. https://doi.org/10.12669/pjms.336.13726
|
[17]
|
Rymer, J. and Wildsoet, C.F. (2005) The Role of the Retinal Pigment Epithelium in Eye Growth Regulation and Myopia: A Review. Visual Neuroscience, 22, 251-261. https://doi.org/10.1017/s0952523805223015
|
[18]
|
Pendrak, K., Papastergiou, G.I., Lin, T., Laties, A.M. and Stone, R.A. (2000) Choroidal Vascular Permeability in Visually Regulated Eye Growth. Experimental Eye Research, 70, 629-637. https://doi.org/10.1006/exer.2000.0825
|
[19]
|
Devarajan, K., Sim, R., Chua, J., Wong, C.W., Matsumura, S., Htoon, H.M., et al. (2019) Optical Coherence Tomography Angiography for the Assessment of Choroidal Vasculature in High Myopia. British Journal of Ophthalmology, 104, 917-923. https://doi.org/10.1136/bjophthalmol-2019-314769
|
[20]
|
Mastropasqua, R., Viggiano, P., Borrelli, E., Evangelista, F., Libertini, D., Di Antonio, L., et al. (2019) In Vivo Mapping of the Choriocapillaris in High Myopia: A Widefield Swept Source Optical Coherence Tomography Angiography. Scientific Reports, 9, Article No. 18932. https://doi.org/10.1038/s41598-019-55192-w
|
[21]
|
Mo, J., Duan, A., Chan, S., Wang, X. and Wei, W. (2017) Vascular Flow Density in Pathological Myopia: An Optical Coherence Tomography Angiography Study. BMJ Open, 7, e013571. https://doi.org/10.1136/bmjopen-2016-013571
|
[22]
|
Fitzgerald, M.E.C., Wildsoet, C.F. and Reiner, A. (2002) Temporal Relationship of Choroidal Blood Flow and Thickness Changes during Recovery from Form Deprivation Myopia in Chicks. Experimental Eye Research, 74, 561-570. https://doi.org/10.1006/exer.2002.1142
|
[23]
|
Kim, D.Y., Silverman, R.H., Chan, R.V.P., Khanifar, A.A., Rondeau, M., Lloyd, H., et al. (2012) Measurement of Choroidal Perfusion and Thickness Following Systemic Sildenafil (Viagra®). Acta Ophthalmologica, 91, 183-188. https://doi.org/10.1111/j.1755-3768.2011.02305.x
|
[24]
|
Nickla, D.L., Totonelly, K. and Dhillon, B. (2010) Dopaminergic Agonists That Result in Ocular Growth Inhibition Also Elicit Transient Increases in Choroidal Thickness in Chicks. Experimental Eye Research, 91, 715-720. https://doi.org/10.1016/j.exer.2010.08.021
|
[25]
|
Wu, H., Chen, W., Zhao, F., Zhou, Q., Reinach, P.S., Deng, L., et al. (2018) Scleral Hypoxia Is a Target for Myopia Control. Proceedings of the National Academy of Sciences of the United States of America, 115, E7091-E7100. https://doi.org/10.1073/pnas.1721443115
|
[26]
|
McBrien, N. (2003) Role of the Sclera in the Development and Pathological Complications of Myopia. Progress in Retinal and Eye Research, 22, 307-338. https://doi.org/10.1016/s1350-9462(02)00063-0
|
[27]
|
McBrien, N.A. (2013) Regulation of Scleral Metabolism in Myopia and the Role of Transforming Growth Factor-β. Experimental Eye Research, 114, 128-140. https://doi.org/10.1016/j.exer.2013.01.014
|
[28]
|
Zhou, X., Zhang, S., Zhang, G., Chen, Y., Lei, Y., Xiang, J., et al. (2020) Increased Choroidal Blood Perfusion Can Inhibit Form Deprivation Myopia in Guinea Pigs. Investigative Opthalmology & Visual Science, 61, Article 25. https://doi.org/10.1167/iovs.61.13.25
|
[29]
|
Zhou, X., Zhang, S., Yang, F., Yang, Y., Huang, Q., Huang, C., et al. (2021) Decreased Choroidal Blood Perfusion Induces Myopia in Guinea Pigs. Investigative Opthalmology & Visual Science, 62, Article 30. https://doi.org/10.1167/iovs.62.15.30
|
[30]
|
Wu, H., Liu, M., Wang, Y., Li, X., Zhou, W., Li, H., et al. (2024) Short-Term Choroidal Changes as Early Indicators for Future Myopic Shift in Primary School Children: Results of a 2-Year Cohort Study. British Journal of Ophthalmology, 109, 273-280. https://doi.org/10.1136/bjo-2024-325871
|
[31]
|
Pan, M., Zhao, F., Xie, B., Wu, H., Zhang, S., Ye, C., et al. (2021) Dietary ω-3 Polyunsaturated Fatty Acids Are Protective for Myopia. Proceedings of the National Academy of Sciences of the United States of America, 118, e2104689118. https://doi.org/10.1073/pnas.2104689118
|
[32]
|
Hiraoka, T., Kakita, T., Okamoto, F., Takahashi, H. and Oshika, T. (2012) Long-Term Effect of Overnight Orthokeratology on Axial Length Elongation in Childhood Myopia: A 5-Year Follow-Up Study. Investigative Opthalmology & Visual Science, 53, Article 3913. https://doi.org/10.1167/iovs.11-8453
|
[33]
|
Lau, J.K., Wan, K., Cheung, S., Vincent, S.J. and Cho, P. (2019) Weekly Changes in Axial Length and Choroidal Thickness in Children during and Following Orthokeratology Treatment with Different Compression Factors. Translational Vision Science & Technology, 8, Article 9. https://doi.org/10.1167/tvst.8.4.9
|
[34]
|
Xu, S., Wang, M., Lin, S., Jiang, J., Yu, M., Tang, X., et al. (2023) Long-term Effect of Orthokeratology on Choroidal Thickness and Choroidal Contour in Myopic Children. British Journal of Ophthalmology, 108, 1067-1074. https://doi.org/10.1136/bjo-2023-323764
|
[35]
|
Zhu, Q. and Zhao, Q. (2022) Short-Term Effect of Orthokeratology Lens Wear on Choroidal Blood Flow in Children with Low and Moderate Myopia. Scientific Reports, 12, Article No. 17653. https://doi.org/10.1038/s41598-022-21594-6
|
[36]
|
Wang, X., Chen, M., Zeng, L. and Liu, L. (2022) Investigation of Retinal Microvasculature and Choriocapillaris in Adolescent Myopic Patients with Astigmatism Undergoing Orthokeratology. BMC Ophthalmology, 22, Article No. 382. https://doi.org/10.1186/s12886-022-02572-y
|
[37]
|
Liu, M., Huang, J., Xie, Z., Wang, Y., Wang, P., Xia, R., et al. (2025) Dynamic Changes of Choroidal Vasculature and Its Association with Myopia Control Efficacy in Children during 1-Year Orthokeratology Treatment. Contact Lens and Anterior Eye, 48, Article ID: 102314. https://doi.org/10.1016/j.clae.2024.102314
|
[38]
|
Chan, B., Cho, P. and Mountford, J. (2008) The Validity of the Jessen Formula in Overnight Orthokeratology: A Retrospective Study. Ophthalmic and Physiological Optics, 28, 265-268. https://doi.org/10.1111/j.1475-1313.2008.00545.x
|
[39]
|
Zhong, Y., Chen, Z., Xue, F., Miao, H. and Zhou, X. (2015) Central and Peripheral Corneal Power Change in Myopic Orthokeratology and Its Relationship with 2-Year Axial Length Change. Investigative Opthalmology & Visual Science, 56, Article 4514. https://doi.org/10.1167/iovs.14-13935
|
[40]
|
Zhong, Y., Chen, Z., Xue, F., Zhou, J., Niu, L. and Zhou, X. (2014) Corneal Power Change Is Predictive of Myopia Progression in Orthokeratology. Optometry and Vision Science, 91, 404-411. https://doi.org/10.1097/opx.0000000000000183
|
[41]
|
Santodomingo-Rubido, J., Villa-Collar, C., Gilmartin, B. and Gutiérrez-Ortega, R. (2018) Short-Term and Long-Term Changes in Corneal Power Are Not Correlated with Axial Elongation of the Eye Induced by Orthokeratology in Children. Eye & Contact Lens: Science & Clinical Practice, 44, 260-267. https://doi.org/10.1097/icl.0000000000000313
|
[42]
|
Wan, K., Lau, J.K., Cheung, S.W. and Cho, P. (2020) Orthokeratology with Increased Compression Factor (OKIC): Study Design and Preliminary Results. BMJ Open Ophthalmology, 5, e000345. https://doi.org/10.1136/bmjophth-2019-000345
|
[43]
|
Tang, W., Zhang, H., Li, S. and Liang, H. (2023) Orthokeratology with Increased Compression Factor in Adolescent Myopia Control: A 2-Year Prospective Randomized Clinical Trial. International Journal of Ophthalmology, 16, 770-777. https://doi.org/10.18240/ijo.2023.05.15
|
[44]
|
Gardner, D.J., Walline, J.J. and Mutti, D.O. (2015) Choroidal Thickness and Peripheral Myopic Defocus during Orthokeratology. Optometry and Vision Science, 92, 579-588. https://doi.org/10.1097/opx.0000000000000573
|
[45]
|
Lee, J.H., Hong, I.H., Lee, T.Y., Han, J.R. and Jeon, G.S. (2020) Choroidal Thickness Changes after Orthokeratology Lens Wearing in Young Adults with Myopia. Ophthalmic Research, 64, 121-127. https://doi.org/10.1159/000510715
|
[46]
|
Stillitano, I., Maidana, E., Lui, M., Lipener, C. and Höfling-Lima, A.L. (2007) Bubble and Corneal Dimple Formation after the First Overnight Wear of an Orthokeratology Lens: A Case Series. Eye & Contact Lens: Science & Clinical Practice, 33, 253-258. https://doi.org/10.1097/01.icl.0000252870.05807.ea
|
[47]
|
Lu, W., Ning, R., Diao, K., Ding, Y., Chen, R., Zhou, L., et al. (2022) Comparison of Two Main Orthokeratology Lens Designs in Efficacy and Safety for Myopia Control. Frontiers in Medicine, 9, Article 798314. https://doi.org/10.3389/fmed.2022.798314
|
[48]
|
Li, Z., Hu, Y., Cui, D., Long, W., He, M. and Yang, X. (2018) Change in Subfoveal Choroidal Thickness Secondary to Orthokeratology and Its Cessation: A Predictor for the Change in Axial Length. Acta Ophthalmologica, 97, e454-e459. https://doi.org/10.1111/aos.13866
|
[49]
|
Wu, H., Peng, T., Zhou, W., Huang, Z., Li, H., Wang, T., et al. (2023) Choroidal Vasculature Act as Predictive Biomarkers of Long-Term Ocular Elongation in Myopic Children Treated with Orthokeratology: A Prospective Cohort Study. Eye and Vision, 10, Article No. 27. https://doi.org/10.1186/s40662-023-00345-2
|