神经内分泌肿瘤的非手术治疗进展
Advances in Non-Surgical Management of Neuroendocrine Neoplasms
摘要: 神经内分泌肿瘤(NENs)是一类起源于神经内分泌细胞的高度异质性肿瘤,以胃肠胰和肺部为主要发病部位。诊断需整合影像学、病理学评估(核分裂象计数、Ki-67指数及坏死特征)及分子标志物检测,三者协同支持精准分级与分期。治疗策略以个体化为核心:局部病灶首选手术切除,非手术治疗涵盖多模式干预。生长抑素类似物(如奥曲肽、兰瑞肽)可有效控制功能性肿瘤的激素分泌症状;分子靶向药物通过调控信号通路抑制肿瘤增殖;化疗方案适用于高增殖活性或进展期患者;肽受体放射性核素治疗(PRRT)对SSTR阳性肿瘤展现出精准杀伤优势。免疫治疗在Merkel细胞癌及小细胞肺癌亚型中疗效显著,但对多数NENs响应有限。此外,放射治疗在特定解剖部位(如头颈部、垂体及胸部)肿瘤中发挥局部控制作用。本文系统综述了神经内分泌肿瘤的个体化非手术治疗策略,以期为临床诊疗实践提供参考。
Abstract: Neuroendocrine tumors (NENs) are highly heterogeneous tumors originating from neuroendocrine cells, mainly in the stomach, pancreas and lungs. Diagnosis requires the integration of imaging, pathological evaluation (mitogram count, Ki-67 index, and necrotic features), and molecular marker detection to support accurate grading and staging. The treatment strategy is individualistic: surgical resection of local lesions is preferred, and non-surgical treatment includes multi-mode intervention. Somatostatin analogues (such as octreotide, lanretide) can effectively control the hormone secretion symptoms of functional tumors. Molecular targeted drugs inhibit tumor proliferation by regulating signaling pathways; Chemotherapy regimen is suitable for patients with high proliferative activity or advanced stage. Peptide receptor radionuclide therapy (PRRT) shows a precision killing advantage for SSTR-positive tumors. Immunotherapy is effective in Merkel cell carcinoma and small cell lung cancer subtypes, but the response to most NENs is limited. In addition, radiation therapy provides local control of tumors at specific anatomical sites, such as the head and neck, pituitary gland, and chest. In this paper, the individualized non-surgical treatment strategies for neuroendocrine tumors are reviewed in order to provide reference for clinical practice.
文章引用:倪寇, 陈怡帆, 胡涵光. 神经内分泌肿瘤的非手术治疗进展[J]. 临床医学进展, 2025, 15(4): 2969-2989. https://doi.org/10.12677/acm.2025.1541263

1. 引言

神经内分泌肿瘤(Neuroendocrine Neoplasms, NENs)是一种异质性罕见肿瘤,起源于肽能神经元以及神经内分泌细胞,具有神经内分泌分化特性并表达神经内分泌标志物,常见于胃肠道和肺部[1] [2]。这些肿瘤可以根据是否分泌激素导致特定的临床综合征而区分为功能性或非功能性[3]-[5]。国内外研究表明,NENs的发病率有显著上升趋势[6]-[12]。有研究估计NENs年发病率为3~5/10万人年,约占所有恶性肿瘤的0.5% [7]。现代流行病学趋势研究中认为NENs在美国的患病总人数小于20万[12],但1973至2012年间报告增长了6.4倍,达到了6.98/10万人年[7],从1996年到2015年,中国台湾NET发病率从0.244/10万人年上升到3.162/10万人年[6]

神经内分泌肿瘤的异质性较高,可起源于多个组织和器官,其最常见的部位是胃肠胰(约60%) [13],其次是肺部(>占20%) [14],其余较少出现的部位包括胰腺、胸腺、垂体、甲状腺、甲状旁腺、皮肤、肾上腺、生殖泌尿器官等[15]-[18]。胰腺和直肠是亚洲人群最常见的发病部位[9],而欧美白人中,小肠和胰腺是最常见的发病部位[7]

NENs的临床症状因肿瘤位置和功能性而异。功能性NENs如类癌综合征,可能表现为潮红、腹泻和心脏病[19],而非功能性NEN的症状通常与肿块效应或转移相关[3]-[5]

NENs的高度异质性决定了其诊断的困难和复杂性,为确定疾病的原发与累及部位并优化治疗管理,除了临床症状,还需包括超声(Ultrasound, US)、计算机体层成像(Computed Tomography, CT)、磁共振成像(Magnetic Resonance Imaging, MRI)等常规影像学检查,特殊的生物标志物、内窥镜(endoscopy)、超声内窥镜(Endoscopic Ultrsonography, EUS) [20] [21]、以及各种分子影像学检查如单光子发射计算机断层显像(Single Photon Emission Computed Tomography, SPECT)和正电子发射计算机断层显像(Positron Emission Tomography Imaging, PET)进行综合诊断,尤以生长抑素受体(Somatostatin Receptor, SSTR)显像、18F-FDG PET/CT、18F-DOPA PET/CT、68Ga-DOTA-exendin-4有较高诊断价值[19] [22]-[26]。目前神经内分泌肿瘤诊断的金标准仍是病理学诊断。同一组织或器官起源的NENs在分类、分级不同时,亦有显著不同的生物学行为,不同部位的NENs亦有不同的病理学命名、分类和分级,2022年世界卫生组织(World Health Organization, WHO)发布了上皮型NENs的统一分类和分级标准[27],该标准总体上把NENs分为分化好的神经内分泌瘤(Neuroendocrine Tumour, NET)和分化差的神经内分泌癌(Neuroendocrine Carcinoma, NEC),而分化好的NET则根据核分裂象和Ki-67增殖指数分为G1、G2和G3共3个级别。该标准特别关注与肿瘤增殖活性相关的3个指标:核分裂象、Ki-67增殖指数和肿瘤性坏死(表1) [19]

Table 1. Classification of epithelial NENs at different anatomical sites [19]

1. 不同解剖部位上皮型NENs的分类标准[19]

部位

类型

分级/亚型

诊断标准

胃肠胰和肝胆

NET

G1

<2个核分裂象/2mm2和(或) Ki-67增殖指数 < 3%

G2

2~20个核分裂象/2mm2和(或) Ki-67增殖指数为3%~20%

G3

>20个核分裂象/2mm2和(或) Ki-67增殖指数 > 20%

NEC

SCNEC

>20个核分裂象/2mm2和(或) Ki-67增殖指数 > 20%(常>70%,具有SCNEC的形态特征)

LCNEC

>20个核分裂象/2mm2和(或) Ki-67增殖指数 > 20%(常>70%,具有LCNEC的形态特征)

上呼吸道、 上消化道

NET

G1

<2个核分裂象/2mm2和没有坏死,以及Ki-67增殖指数 < 20%

G2

2~10个核分裂象/2mm2和(或)坏死,以及Ki-67增殖指数 < 20%

G3

>10个核分裂象/2mm2和(或) Ki-67增殖指数 > 20%

NEC

SCNEC

>10个核分裂象/2mm2和(或) Ki-67增殖指数 > 20%(常>70%,具有SCNEC的形态特征)

LCNEC

>10个核分裂象/2mm2和(或) Ki-67增殖指数 > 20%(常>55%,具有LCNEC的形态特征)

肺和胸腺

NET

TC/NET,G1

<2个核分裂象/2mm2和没有坏死

AC/NET,G2

2~10个核分裂象/2mm2和(或)坏死(通常是点状坏死)

伴核分裂象和(或)Ki-67增殖指数 增高的类癌(相当于NET,G3)

具有AC形态,但>10个核分裂象/2mm2和(或)Ki-67增殖指数 > 30%

NEC

SCNEC

>10个核分裂象/2mm2,常伴坏死和SCNEC的形态

LCNEC

>10个核分裂象/2mm2,几乎总伴坏死和具有LCNEC的形态

甲状腺

MTC

低级别MTC

<5个核分裂象/2mm2和没有坏死,以及Ki-67增殖指数 < 5%

高级别MTC

下列3个指标中至少有1个:① ≥5个核分裂象/2mm2; ② 出现坏死;③ Ki-67增殖指数 ≥ 5%

TC:典型类癌(Typical Carcinoid);AC:不典型类癌(Atypical Carcinoid)。乳腺NEN目前无统一的分级标准,常采用Nottingham分级系统分级,临床中与其他部位(女性生殖、泌尿系统和男性生殖等)参考GEP-NENs分类和分级标准。

分化好的NET即使出现远处转移,亦能获得较长生存期,可长达5年甚至10年。而分化差的NEC其预后远差于同部位的其他恶性肿瘤,文献报道的中位生存期仅12~19个月[19]。因此,鉴别高分化的NET和低分化的NEC有着极为重要的意义。需从细胞形态、组织结构和免疫组织化学(Immunohistochemistry, IHC) 3个方面综合考量[28]。病理学形态特征是诊断NENs的关键,高分化的NETs由卵圆形细胞核和颗粒状染色质组成,具有“盐和胡椒”的外观,低分化的NEC常见为均一的少细胞质(Small Cell NEC, SCNEC)或显著细胞质(Large Cell NEC, LCNEC),呈“片状”生长。有研究认为NETs的神经内分泌标志物表达水平较NECs更高[29]。而确认神经标志物的表达则要求在形态学基础上利用IHC染色确认肿瘤具有神经内分泌分化。推荐应用包括突触素(Synaptophysin, Syn)、嗜铬粒蛋白A (chromogram A, CgA)和胰岛素瘤相关蛋白1 (Insulinoma-Associated Protein 1, INSM1)在内的多个抗体染色以明确诊断[30]。诊断时还需鉴别混合性神经内分泌–非神经内分泌肿瘤(Mixed Neuroendocrine Non-Neuroendocrine Neoplasms, MiNENs),这是一种同时含有神经内分泌和非神经内分泌成分的混合型上皮肿瘤,约占NENs的5%,在形态学和免疫表型中两种成分独立,且每种成分至少占30%,常表现为腺癌和神经内分泌癌的组合[31]

NENs的治疗被认为以内镜治疗[32] [33]、外科治疗[34]、介入治疗[35]等手术方案为主。内镜手术在低级别、病灶局限的消化道神经内分泌肿瘤(Gastrointestinal Neuroendocrine Neoplasms, GI-NENs)中作为首选治疗方式,对于无内镜手术指征的低级别GI-NENs,胰腺NENs,支气管肺和胸腺NENs、默克尔细胞癌(Merkel Cell Carcinoma, MCC)、除泌乳素瘤外的垂体神经内分泌肿瘤(Pituitary Neuroendocrine Tumors, PitNETs)、副神经节瘤/嗜铬细胞瘤(Pheochromocytoma and Paraganglioma, PPGLs)、甲状腺髓样癌(Medullary Thyroid Carcinoma, MTC)、以外科手术作为首选治疗方式[19],同时新辅助治疗或术前转化治疗可尝试选择化疗、抗血管生成靶向治疗及肽受体放射性核素治疗(Peptide Receptor Radionuclide Therapy, PRRT) [36]

NET的术后辅助治疗适用于接受根治性手术但术后复发风险较高的GEP-NETs患者及AC患者,常有肿瘤分级较高、分期较晚、切缘阳性等特点,常应用CAPTEM方案(卡培他滨 + 替莫唑胺)或替莫唑胺单药辅助治疗。对各部位NEC,推荐行术后化疗(EP或EC方案等)和(或)放疗[19]。MCC术后或可考虑免疫治疗作为辅助治疗方案[37]。PitNETs、PPGLs、MTC的术后辅助治疗尚缺乏证据。

然而,近几十年来,许多非手术治疗方法有了相当大的发展,涵盖全身治疗[38]、内分泌治疗[39] [40]、靶向治疗[41]、放射治疗[42]、PRRT [43]等手段扩大了这些肿瘤的治疗选择。

本综述的重点是为临床和基础研究科学家提供有关神经内分泌肿瘤非手术治疗的全面概述,以帮助他们理解NENs和选择治疗方式。

2. 药物治疗

神经内分泌肿瘤(NENs)因其组织学特征和生物学行为的显著差异,在临床治疗领域面临多重诊疗难题。为实现个体化治疗目标,临床决策需建立在对多维度参数的全面评估之上,具体包括:明确肿瘤原发部位及功能性分泌状态,鉴别组织分化程度与增殖指数,检测生长抑素受体(SSTR)显像结果,评估转移病灶分布范围,同时整合分子遗传学特征和疾病动态演变趋势。这种基于循证医学的多参数评估体系,可为NENs患者制定最优化的药物治疗策略提供科学依据。

NENs的系统性药物治疗应遵循双重治疗目标:一方面通过调节受体介导通路改善功能性肿瘤(F-NENs)引发的内分泌紊乱及相关临床综合征;另一方面基于分子病理学特征抑制肿瘤增殖及转移进程[44] [45]

2.1. 内分泌治疗

2.1.1. 生长抑素类似物

分子调控视角下,生长抑素作为多效性神经肽,通过配体–受体相互作用对内分泌网络产生双向调节作用,尤其表现在胰高血糖素动态平衡及胰岛素分泌节律的精密调控。鉴于大多数NENs细胞表面特异性表达SSTR亚型,临床实践中长效缓释剂型生长抑素类似物(Long-Acting Somatostatin Analogs, SSAs)通过高亲和力受体结合介导信号通路双重调控:不仅实现对肿瘤源性激素模拟物(如血管活性肠肽、组胺等)的生物化学调控,同时展现对肿瘤增殖信号阻断效应,这使其成为功能性NENs症状控制的核心药理机制[46] [47]。SSAs包括长效奥曲肽、兰瑞肽水凝胶及长效帕瑞肽,是改善大部分功能性NENs,尤其是胸部及消化系统NENs激素相关症状的一线治疗[47]。分子层面上,SSTR家族包含SSTR1-5五种亚型,其中奥曲肽和兰瑞肽主要选择性激活SSTR2/SSTR5信号轴,而帕瑞肽则展现出对SSTR1/2/3/5多亚型的广谱亲和力,其延缓GEP-NET和不明原发灶NET肿瘤进展的疗效分别在SPINET临床研究中得到证实,有效患者延长PFS [40]

临床给药方案需遵循受体动力学特征:推荐采用奥曲肽缓释微球制剂(20~30 mg/4周,肌注)或兰瑞肽水凝胶缓释系统(90~120 mg/4周,皮下注射)作为基础治疗方案。针对耐药性病例可采取剂量密集策略或剂量递增模式[48]。对于突发性激素危象,皮下按需注射短效奥曲肽可作为急性期干预手段[49]。当一线治疗失效时,可启用第二代广谱SSAs——帕瑞肽长效制剂,初始剂量40 mg/4周,根据生物标志物应答情况阶梯式上调至60 mg/4周维持治疗[50]。第二代广谱SSAs还可以通过选择性激活SSTR5信号通路,可有效抑制ACTH异常分泌,以治疗ACTH瘤[51]。此外,在生长激素瘤与分泌促甲状腺激素的垂体神经内分泌肿瘤抑制激素分泌治疗中,SSAs均是首选治疗方案[52] [53]

SSAs最常见的不良反应包括胆结石形成、血糖波动、和中度胃肠不适,如恶心和腹胀[54] [55]。因此,胰岛素瘤的SSAs应用全程应实施持续血糖监测,SSAs通过SSTR5介导的β细胞超极化作用加剧低血糖风险[3]。常推荐联用二氮嗪,通过激活胰腺ATP敏感性钾通道抑制胰岛素释放[21]

2.1.2. 生长激素受体拮抗剂

生长激素受体拮抗剂(Growth Hormone Receptor Antagonist)通过竞争性拮抗生长激素受体(GHR)的活性,可有效降低血清胰岛素样生长因子-1 (IGF-1)水平,代表药物为培维索孟(Pegvisomant) [56]。其治疗方案需遵循个体化原则:起始阶段推荐采用负荷剂量(40 mg,皮下注射),随后调整为每日10 mg维持治疗,后续剂量需根据IGF-1的动态监测结果进行优化调整。在生长激素瘤的疗效评估中,需定期联合检测随机血清生长激素(GH)浓度及IGF-1水平以综合评价生化缓解状态。值得注意的是,培维索孟的作用机制并非抑制GH分泌,而是特异性阻断GH与受体的结合,从而削弱其下游信号传导[52]。因此,当GH与IGF-1水平出现分离现象时(如GH水平持续升高而IGF-1正常化),建议以IGF-1作为疗效判断的主要指标。

2.1.3. 多巴胺受体激动剂

多巴胺受体激动剂(Dopamine Agonists, DA)是泌乳素瘤患者实现生化缓解的首选药物,其中溴隐亭(Bromocriptine)因其广泛可及性及明确疗效被国内指南列为一线治疗方案[57]。该药物的推荐使用剂量为每日2.5~15.0 mg,建议采用个体化剂量滴定策略:初始日剂量为2.5 mg,根据血清泌乳素(PRL)水平及肿瘤体积变化逐步调整至目标剂量。对于溴隐亭耐药(定义为PRL未达标或肿瘤缩小不足50%)或药物不耐受患者,可转换为第二代DA卡麦角林(Cabergoline)。相较于溴隐亭,卡麦角林对多巴胺D2受体具有更高的亲和力及选择性,推荐剂量为每周0.5~3.5 mg (分1~2次给药),其临床缓解率及耐受性均显著优于传统DA药物。

2.1.4. 肾上腺皮质类固醇合成抑制剂及糖皮质激素受体拮抗剂

库欣综合征(Cushing’s syndrome)患者因促肾上腺皮质激素(ACTH)的持续高分泌状态,常继发肾上腺源性糖皮质激素过量释放,需联合应用肾上腺皮质类固醇合成抑制剂以阻断皮质醇生成通路。常用药物包括:通过抑制11β-羟化酶活性减少皮质醇合成的美替拉酮;兼具肾上腺皮质溶解作用及酶抑制效应的米托坦(Mitotane);抑制胆固醇侧链裂解酶及11β-羟化酶的酮康唑(Ketoconazole)以及新型11β-羟化酶抑制剂奥西卓司他[58]

对于存在肾上腺抑制剂可及性限制的患者,可选择口服米非司酮(Mifepristone)治疗,该药物通过竞争性拮抗糖皮质激素受体改善高皮质醇血症相关糖代谢异常[58]。但其疗效需通过血糖动态监测间接评估,且对皮质醇过量介导的低钾血症调控作用有限。

2.1.5 选择性雌激素受体调节剂(SERMs)

根据2023年《美国国立综合癌症网络(NCCN)指南》,雌激素受体阳性乳腺神经内分泌肿瘤(ER + NETB)的全身治疗策略与常规激素受体阳性乳腺癌(HR + BC)遵循相同原则,推荐将选择性雌激素受体调节剂(SERMs)或芳香化酶抑制剂(AIs)作为基础方案,绝经前高危患者需联用卵巢功能抑制(OFS)以增强疗效[59]。这一共识得到回顾性临床数据的支持:一项纳入42例ER阳性NETB患者的队列研究显示,接受他莫昔芬辅助治疗者的五年无病生存率(DFS)显著优于未治疗组(84% vs 65%, p < 0.05),提示传统内分泌治疗在神经内分泌分化肿瘤中仍具明确抗增殖活性[60]

目前临床研究仅支持他莫昔芬用于治疗神经内分泌肿瘤,乳腺癌内分泌治疗所常用的芳香化酶抑制剂(AIs)、雌激素受体下调剂(SERDs)、促性腺激素释放激素(GnRH)激动剂,对于乳腺神经内分泌肿瘤患者的预后是否有获益仍待进一步研究。

2.2. 分子靶向药物

2.2.1. mTOR抑制剂

PI3K/AKT/mTOR通路的异常活化是神经内分泌肿瘤(NETs)发生发展的关键致癌机制。作为该通路的核心靶点,mTOR抑制剂依维莫司(Everolimus)通过阻断mTORC1复合物抑制肿瘤细胞增殖的生物学效应,在RADIANT-3、RADIANT-4研究中依维莫司显著提升了NET患者的PFS [61] [62]。因此,推荐依维莫司用于进展期G1/G2级胃肠胰、肺及不明原发灶NET患者。

在RADIANT-2和COOPERATE-2研究中,依维莫司联合SSAs对进展期pNET、胃肠及肺NET患者较SSAs未能提升PFS,因此不推荐常规使用SSAs与依维莫司联用来控制肿瘤生长[63]-[65]。目前,无证据支持依维莫司在高级别NENs中的应用。

临床实践发现,标准剂量依维莫司(每天10 mg)的耐受性较低,近60%的患者需药物减量,常见不良反应为口腔溃疡、血糖血脂升高、机会性感染、非感染性间质性肺炎等[45],推荐依维莫司每天5 mg作为起始剂量,每1~2周评估患者的不良反应,对可耐受者可考虑增量,不超过每天10 mg。

2.2.2. 酪氨酸激酶抑制剂(TKIs)

靶向抑制血管内皮生长因子受体(VEGFR)及其下游信号传导已成为神经内分泌肿瘤(NET)领域的重要治疗策略。以舒尼替尼、索凡替尼和卡博替尼为代表的酪氨酸激酶抑制剂具有多靶点抑制特性,其作用机制涵盖抗血管生成和直接抗肿瘤效应。临床研究数据显示,舒尼替尼基于III期临床试验结果(中位无进展生存期11.4个月对比5.5个月)获批用于进展性胰腺神经内分泌肿瘤的治疗[66];索凡替尼则经中国药监部门批准用于晚期胃肠胰神经内分泌肿瘤,其SANET系列研究显示客观缓解率达19% [67];卡博替尼在肺神经内分泌肿瘤的II期临床试验中表现出68%的疾病控制率[68]

在临床应用中,舒尼替尼和索凡替尼因其疗效显著而成为首选治疗方案。根据个体化治疗原则,推荐舒尼替尼初始剂量为每日25毫克,索凡替尼每日200毫克,并在治疗过程中持续监测甲状腺功能、24小时动态血压及尿蛋白与肌酐比值等指标。此类抗血管生成药物常见不良反应涉及多个系统,包括高血压、蛋白尿、腹泻、甲状腺功能减退、水肿、出血风险增加、消化道穿孔及瘘管形成、骨髓抑制、肝功能异常以及手足综合征等。

2.2.3. 细胞周期蛋白依赖性激酶4/6抑制剂

CDK4/6属于靶向治疗药物,主要用于治疗激素受体阳性(HR+)、人表皮生长因子受体2阴性(HER2-)的乳腺癌,也探索性用于其他实体瘤治疗。目前有一项II期单臂试验(NCT02644460)提示晚期进展性胰腺NET中位PFS 12.1个月,ORR 8% [69],仍需要进一步临床研究确定其疗效。

2.2.4. 靶向药物随访监测

值得注意的是,约30%患者因药物毒性反应无法耐受标准剂量治疗,需进行剂量调整或暂停给药[70]。临床实践中需建立完善的随访监测体系,及时识别和处理药物相关不良反应,以平衡治疗效果与安全性。常采用的多维度监测包括:

1) 代谢监测

每月检测血常规、肝肾功能及电解质水平,使用mTOR抑制剂时需增加血脂、血糖监测频次。空腹血糖 ≥ 7.0 mmol/L或随机血糖 ≥ 11.1 mmol/L时,优先选用DPP-4抑制剂(如西格列汀),出现酮症倾向(血酮 ≥ 3.0 mmol/L)需暂停靶向治疗,胰岛素强化干预[71];心血管高风险患者LDL-C ≤ 1.8 mmol/L或甘油三酯 ≥ 5.6 mmol/L时启用他汀类药物治疗[72];低钾血症(K+ < 3.5 mmol/L)时,口服氯化钾缓释片联合保钾利尿剂。

2) 影像学监测

治疗前基线68Ga-DOTATATE PET/CT显像,每6~12个月复查对比肿瘤负荷变化,同时监测骨密度。治疗应答评估采用RECIST 1.1联合PERCIST双标准[73],骨密度检测T值 ≤ −2.5时启用唑来膦酸4 mg/6月。

3) 心功能监测

对于使用舒尼替尼等VEGFR抑制剂患者,建议治疗前及每3个月进行心脏彩超和NT-proBNP检测,左室射血分数下降 > 10%时应启动心功能保护方案[74]

2.3. 细胞毒性药物

细胞毒性化疗药物是NENs治疗的重要药物,常用方案包括CAPTEM方案、FOLFOX方案、EP方案等(表2) [19]

Table 2. Common chemotherapy regimens and their usage and dosage [19]

2. NENs常用化疗方案及其用法用量[19]

方案

药物

具体用法用量

CAPTEM

卡培他滨、替莫唑胺

卡培他滨:750 mg/m2,口服,bid,d1-14;

替莫唑胺:200 mg/m2,口服,qd,d10-14;q4w

FOLFOX

奥沙利铂、亚叶酸钙、5-FU

奥沙利铂:85 mg/m2,静滴,d1;

亚叶酸钙:400 mg/m2,静滴,d1;

FU:400 mg/m2,静注,d1;

5-FU:2400 mg/m2,输液泵持续静注46h;q2w

XELOX

奥沙利铂、卡培他滨

奥沙利铂130 mg/m2,静滴,d1;

卡培他滨1000 mg/m2,口服,bid,d1-14;q3w

S-1/TMZ

替吉奥、替莫唑胺

替吉奥:40~60 mg,口服,bid,d1-14;

替莫唑胺:200 mg,口服,qd,d1-14;q3w

EP

依托泊苷、顺铂

依托泊苷:100 mg/m2,静滴,d1-3;

顺铂:75 mg/m2,分3天静滴,d1-3;q3w

EC

依托泊苷、卡铂

依托泊苷:100 mg/m2,静滴,d1-3;

卡铂:AUC 4~6,静滴,d1;q3w

IP

伊立替康、顺铂

伊立替康:60 mg/m2,静滴,d1、d8、d15;

顺铂:60 mg/m2,静滴,d1;q4w

FOLFIRI

伊立替康、亚叶酸钙、

5-氟尿嘧啶

伊立替康:180 mg/m2,静滴,d1;

亚叶酸钙:400 mg/m2,静滴,d1;

5-FU:400 mg/m2,静注,d1;

5-FU:2400 mg/m2,输液泵持续静注46 h;q2w

Qd:每日一次,Bid:每日两次;5-FU:5-氟尿嘧啶;AUC:曲线下面积(Area Under Curve)。

2.3.1. G1/G2级胃肠胰神经内分泌肿瘤的化疗应用

对于分化良好(G1/G2级)的胃肠胰神经内分泌肿瘤(GEP-NETs),临床常用的全身化疗方案包括卡培他滨联合替莫唑胺(CAPTEM)、FOLFOX、替莫唑胺联合S-1 (TMZ/S-1)以及链脲霉素(STZ)联合5-氟尿嘧啶(5-FU)或蒽环类药物等。E2211 III期随机对照试验[75]表明,与替莫唑胺单药相比,CAPTEM方案可显著延长患者无进展生存期(中位PFS:22.7个月vs 14.4个月),这一结果在后续一项纳入151例患者的回顾性队列研究[76]中进一步得到验证。然而,FOLFOX方案在神经内分泌肿瘤(NENs)中的疗效证据主要来源于回顾性数据[77] [78],其治疗晚期胰腺神经内分泌肿瘤(pNETs)及胃肠神经内分泌肿瘤(GI-NETs)的中位PFS分别为6~9个月和3~14个月,而直肠神经内分泌肿瘤的疗效相对有限。值得注意的是,以链脲霉素为基础的联合化疗方案虽在国际指南中占有一席之地,但受限于药物可及性和毒性管理问题,其在国内临床实践中应用甚少。基于现有证据,化疗的推荐适用人群需严格筛选,通常建议用于肿瘤负荷较高、疾病进展迅速、Ki-67指数 > 10%且对生物治疗(如生长抑素类似物)、靶向药物(如依维莫司)或肽受体放射性核素治疗(PRRT)耐药的患者,优先选择CAPTEM或FOLFOX等循证支持方案[79]

2.3.2. G3级NET的化疗应用

针对高增殖活性(G3级)神经内分泌肿瘤的全身化疗策略尚未形成统一标准。回顾性研究显示,替莫唑胺为基础的治疗方案在晚期G3级NET中表现出一定潜力,客观缓解率(ORR)可达41%,中位PFS介于5.7~20.7个月,且联合卡培他滨、胰腺原发灶以及一线使用时疗效更为显著[80]。国内多中心回顾性数据[76]同样支持CAPTEM方案对G3级GEP-NENs患者的生存获益。此外,FOLFOX方案在部分临床实践中被尝试用于G3级NET,一项多中心回顾性分析[80]报道其一线治疗的ORR为56.4%,中位PFS为6.4个月,但相较于CAPTEM方案其生存优势稍逊。NORDIC NEC研究[81]进一步揭示了Ki-67指数的预测价值:当Ki-67 ≥ 55%时,患者对依托泊苷联合铂类(EP/EC)方案的反应率显著提高(42% vs 15%),因此推荐对此类患者优先选择铂类化疗;而对于Ki-67 < 55%者,则建议采用CAPTEM或FOLFOX等非铂方案以平衡疗效与毒性风险。

2.3.3. 肺及胸腺NET的化疗应用

临床实践证据显示,肺及胸腺神经内分泌肿瘤(NETs)的全身化疗选择主要基于回顾性研究数据。多项回顾性分析表明,替莫唑胺(TMZ)单药或联合卡培他滨在肺及胸腺神经内分泌肿瘤中显示出适度抗肿瘤活性,客观缓解率(ORR)介于10%至30%之间,中位无进展生存期(PFS)为5至13个月[44]。以奥沙利铂为基础的联合化疗方案(如FOLFOX)亦表现出潜在疗效,部分研究报道其ORR可达20%,中位PFS范围为8至15个月[44]。基于现有证据,临床指南推荐对晚期或进展期肺及胸腺神经内分泌肿瘤患者采用以TMZ (联合或不联合卡培他滨)或奥沙利铂为核心的化疗方案。

2.3.4. 其他罕见神经内分泌肿瘤的化疗应用

对于侵袭性或晚期垂体神经内分泌肿瘤(PitNETs)、甲状腺髓样癌(MTC)、嗜铬细胞瘤/副神经节瘤(PPGLs)及默克尔细胞癌(MCC),化疗通常作为后线治疗选择。临床研究数据证实,在PitNETs中,替莫唑胺单药治疗被证实具有显著临床获益,尤其适用于生长激素腺瘤等特定亚型[82]。MTC患者经酪氨酸激酶抑制剂(TKIs)治疗进展后,可考虑转换至传统细胞毒药物治疗,包括阿霉素单药或联合顺铂方案,以及5-FU与达卡巴嗪的联合方案,尽管此类治疗应答率普遍偏低[8]。对于嗜铬细胞瘤/副神经节瘤(PPGLs),环磷酰胺联合长春新碱及达卡巴嗪(CVD方案)或替莫唑胺为基础的联合方案可能提供疾病控制。MCC的化疗策略通常保留于PD-1/PD-L1抑制剂治疗失败或存在免疫治疗禁忌证的患者,可选方案包括EP或EC方案,以及环磷酰胺、阿霉素与长春新碱(CAV)的联合方案,但需警惕此类方案较高的血液学毒性风险[83]

2.3.5. 化疗在NEC中的应用

1) 肺大细胞神经内分泌癌(LCNEC)

肺LCNEC的标准治疗仍存在争议[84]。针对肺LCNEC的一线治疗,指南推荐EP或EC的标准化疗方案[85]。疾病进展后,二线治疗可选择伊立替康、拓扑替康、紫杉类或培美曲塞等细胞毒药物。

2) 局限期小细胞肺癌(SCLC)

局限期SCLC的一线治疗采用EP/EC方案化疗4周期,并同步联合胸部放疗以增强局部控制[86] [87]。术后辅助化疗推荐相同方案以降低复发风险。近年来,免疫治疗在局限期SCLC中的探索取得突破,ADRIATIC III期临床试验证实,放化疗后使用度伐利尤单抗巩固治疗可显著延长无进展生存期(PFS)和总生存期(OS) [88]。疾病进展后的二线治疗可选择拓扑异构酶抑制剂(伊立替康/拓扑替康)、吉西他滨或长春瑞滨等药物,或优先纳入新型疗法的临床试验。

3) 广泛期小细胞肺癌(SCLC)

广泛期SCLC的一线治疗标准已从传统化疗转向免疫联合治疗,EC方案联合PD-L1抑制剂(如斯鲁利单抗、阿得贝利单抗等)显著改善患者生存[89]-[92]。完成4周期联合治疗后未进展者需继续免疫维持治疗至疾病进展。替代方案包括EP/EC方案或伊立替康联合铂类(IP/IC方案) [93]-[96]。二线治疗策略与局限期进展后方案相似,但对停药超过6个月复发的患者可尝试重启原治疗方案。安罗替尼作为多靶点抗血管生成药物,已在国内获批用于三线及以上治疗[97]

4) 晚期/转移性肺外神经内分泌癌(NEC)

肺外转移性高级别NEC (包括SCNEC和LCNEC)的一线治疗推荐EP/EC方案,或基于Ki-67指数分层选择:Ki-67 ≥ 55%者优先采用铂类方案,Ki-67 < 55%者则考虑替莫唑胺(TMZ)为基础的方案[98]-[101]。一线治疗进展后,二线可选CAPTEM、伊立替康或奥沙利铂联合方案(如FOLFOX/XELOX),联合贝伐珠单抗可能增强疗效[102]-[104]。特殊分子特征患者(如dMMR/MSI-H)可从免疫检查点抑制剂(ICIs)单药治疗中获益[105]。对于多线治疗失败的难治性病例,可尝试ICIs联合治疗(如纳武利尤单抗 + 伊匹木单抗)或联合抗血管生成酪氨酸激酶抑制剂(TKIs) [38] [106]-[109]。需强调,所有晚期NEC患者初始治疗前应经多学科团队(MDT)评估局部干预的必要性。

2.4. 放射性核素治疗

基于分子靶向的放射性配体疗法(PRRT)与常规核素治疗构成神经内分泌肿瘤(NENs)的重要治疗体系。PRRT通过将放射性同位素与生长抑素类似物(SSAs)共价结合,利用肿瘤细胞表面过表达的生长抑素受体(SSTR)实现精准辐射传递,通过电离辐射诱导DNA双链断裂发挥抗肿瘤效应[110]-[112]。该疗法尤其适用于高分化神经内分泌肿瘤(NETs),因其普遍呈现SSTR高表达特征。临床实践中,177Lu标记的DOTATATE因具备更优的辐射能量分布及较低的肾脏辐射吸收剂量,已逐步取代90Y成为主流治疗核素[111]

经FDA及EMA批准,177Lu-DOTATATE目前被确立为SSTR阳性胃肠胰神经内分泌肿瘤(GEP-NETs)的标准治疗方案。关键性NETTER-1研究证实,在转移性高分化(G1/G2)中肠NET患者中,联合标准剂量奥曲肽(30 mg/4周)可使中位无进展生存期(PFS)显著延长至28.4个月(对照组8.5个月),但总生存期(OS)未达统计学差异(48 vs 36个月,P = 0.3) [113]

扩展适应症研究显示,PRRT在肺NET及多部位转移性NET中同样具有应用价值。回顾性队列分析(n = 443)表明,177Lu-DOTATATE治疗可实现39%的客观缓解率(ORR)及82%的疾病控制率,中位PFS达29个月[114]。对于SSTR阳性的转移性副神经节瘤/嗜铬细胞瘤(PPGLs),尽管ORR相对较低(7%~28%),但疾病控制率可达42%~100%,提示其在姑息治疗中的重要地位[115]

安全性评估显示,PRRT相关3/4级血液学毒性发生率较低(血小板减少2%、淋巴细胞减少9%),在规范氨基酸肾保护方案下未观察到显著肾功能损害[111]。常规核素治疗中,131I-MIBG通过模拟去甲肾上腺素转运机制靶向神经内分泌组织,在MIBG显像阳性的不可切除PPGLs中实现30% ORR及82%疾病控制率,成为重要替代治疗方案[115]

2.5. 免疫治疗

2.5.1. 免疫调节剂

对于难治性类癌综合征,可用干扰素(Interferon, IFN)作为免疫治疗联合SSAs作为二线治疗方案[49] [116],一项经典临床研究PROMID [117]证明联用干扰素及奥曲肽治疗组的无进展生存期显著优于对照组,但总生存期无显著差距。但由于其副作用显著,包括流感样症状、骨髓抑制、甲状腺功能异常。目前,依维莫司/舒尼替尼等靶向药物已取代IFN成为主流二线方案[45]

2.5.2. 免疫检查点抑制剂

近年来,免疫检查点抑制剂(ICIs)作为靶向PD-1/PD-L1通路的创新疗法,已在多种实体瘤治疗中展现出差异化临床响应特征[118] [119]。然而在神经内分泌肿瘤(NENs)领域,除Merkel细胞癌(MCC)及小细胞肺癌(SCLC)外,其他亚型的免疫治疗仍处于探索阶段。现有临床研究数据显示,PD-1/PD-L1抑制剂在多数NENs中总体有效率偏低[120] [121],因此目前仅推荐用于经多线系统治疗失败且存在特定分子特征(如微卫星高度不稳定/MSI-H、错配修复缺陷/dMMR或高肿瘤突变负荷)的晚期病例。

MCC的免疫治疗机制具有独特生物学基础:紫外线暴露相关亚型呈现高肿瘤突变负荷及显著CD8+ T细胞浸润特征,而MCPyV病毒相关亚型则表现为PD-L1高表达伴免疫细胞浸润增强[122]。这种“免疫热肿瘤”特性使其成为ICIs的理想治疗靶点。临床研究数据显示,纳武利尤单抗与帕博利珠单抗等PD-1抑制剂在转移性MCC中展现出33%~68%的ORR,其中完全缓解率可达11.4%~30.0% [123]-[125]。基于当前证据,虽缺乏Ⅲ期临床试验数据支持,NCCN指南仍将ICIs列为晚期MCC的一线治疗方案。此外,术后辅助治疗领域的研究表明,根治性切除后应用纳武利尤单抗可显著改善无病生存(DFS),较观察组复发风险降低[37]

在垂体神经内分泌肿瘤(PitNETs)治疗领域,小样本回顾性研究提示替莫唑胺(TMZ)耐药后,库欣病及泌乳素瘤患者接受ICIs治疗可能获得50%的疾病控制率,推测与TMZ诱导的基因组不稳定性增加相关[82]。鉴于该病种罕见性导致的临床研究局限性,目前推荐ICIs作为挽救治疗方案用于经TMZ治疗失败的进展期病例。值得注意的是,上述结论仍需通过多中心协作研究进一步验证。

2.5.3. 免疫治疗困境

现有证据显示PD-1单抗在G3神经内分泌癌中的客观缓解率仅约3.7%,免疫相关不良事件达75.5% [126],且存在超进展风险。在一项双免疗法前瞻研究中,研究结果提示度伐利尤单抗联合曲美木单抗在神经内分泌肿瘤一线治疗失败患者中获益有限[121]

而免疫联合化疗则有所获益,2022年的一项III期临床研究探索了PD-1抗体斯鲁利单抗联合EC方案一线治疗进展期SCLC的疗效,结果中位OS (15.4月vs 10.9月)与PFS (5.7月vs 4.3月)有统计学差异[91]。提示联合治疗策略优化对于NENs的治疗有获益。

3. 放射治疗

3.1. 头颈部肿瘤的放疗

头颈部小细胞神经内分泌癌(SCNEC)作为头颈部恶性肿瘤的特殊亚型,其发病率较低,但具有显著侵袭性生物学特征。流行病学数据显示超过80%的病例在初诊时已进展至局部晚期(Ⅲ~Ⅳ期),相较于头颈部鳞状细胞癌,该病种表现出更差的临床转归[127] [128]。针对局部进展期病例的多中心研究指出,多模式治疗策略(手术结合放化疗)相较于单纯化放疗方案未能显著改善患者预后指标,这一发现提示同步放化疗可能构成此类患者的标准治疗选择[129]。对于已发生远处转移的晚期病例,系统性化疗仍为治疗基石,现有证据表明增加局部放射治疗并未能有效提升OS获益[129]

头颈部副神经节瘤(PGLs)的放射治疗主要适用于解剖结构复杂(如颈动脉体瘤)或存在手术禁忌(如颅内延伸病灶)的特殊病例[130]。临床数据显示常规分割放疗的客观缓解率维持在20%~30%区间,而立体定向消融放疗(SABR)通过精准剂量投照(20~25 Gy/3~5次或单次12~15 Gy)可显著提升局部控制率至90%~100%,同时使80%患者的肿瘤相关临床症状获得显著改善[131] [132]

3.2. 垂体神经内分泌肿瘤(PitNETs)的放疗

垂体神经内分泌肿瘤(PitNETs)的放疗策略需建立在多学科诊疗基础上。当患者对药物干预及外科干预产生抵抗时,放射治疗可作为有效干预手段[133]。近年来立体定向放射外科技术(SRS)的临床应用显示,与传统分割放疗相比,SRS在激素活性肿瘤的控制效率方面具有优势,同时能显著降低放射性视神经病变等并发症发生率[134]。长期随访数据显示放疗后4年病灶控制率可维持在88%~97%区间[135],但需关注其导致的迟发性内分泌功能障碍,特别是5年内继发性垂体功能不全发生率可达20% [136]。对于术后影像学评估存在明确肿瘤残留的病例,辅助性放疗可显著降低局部复发风险,因此被推荐为标准化辅助治疗方案[137]

3.3. 胸部神经内分泌肿瘤的放疗

小细胞肺癌(SCLC)作为高级别神经内分泌癌的代表性病种,其放射治疗方案需依据疾病分期进行分层管理。局限期病例接受胸部放疗联合预防性脑照射(PCI)可获得显著生存获益,5年生存率提升具有临床意义[42]。剂量优化研究指出,采用大分割模式(60 Gy/40次)可进一步提升局部控制效率[138]。对于化疗敏感的广泛期病例,原发灶巩固放疗联合PCI可改善OS [139]。在肺大细胞神经内分泌癌(LCNEC)治疗领域,Ⅰ~Ⅱ期病例根治术后辅助放疗的生存获益证据不足,而Ⅲ期病例实施手术联合放疗可显著改善预后[140]。针对支气管肺及胸腺类癌(AC)术后管理,NCDB队列分析显示完整切除术后辅助治疗(放化疗)未能提高生存指标[141],但对于切缘阳性或存在纵隔淋巴结转移的高危病例,推荐采用多模式辅助治疗[142] [143]

3.4. 泌尿生殖系统神经内分泌癌的放疗

膀胱小细胞神经内分泌癌具有高度恶性特征,临床实践指南强调需采用手术切除联合放化疗的综合治疗方案以提高生存获益[144]-[146]。宫颈小细胞神经内分泌癌的生物学行为显著区别于鳞癌,早期病例推荐根治性手术联合术后辅助化疗或同步放化疗,晚期病例则需通过同步放化疗实现OS延长[147]-[150]。值得注意的是,该病种不同分期的治疗反应差异提示需建立基于分子分型的个体化放疗方案。

3.5. 皮肤Merkel细胞癌(MCC)的放疗

该高侵袭性皮肤神经内分泌癌具有显著的局部复发倾向,文献报道术后局部复发风险可达40% [151]。放射敏感性分析显示,MCC对放射线具有良好的生物学响应特征。临床实践指南建议,对于接受局部扩大切除术(切缘 ≥ 1 cm)的患者,联合辅助放疗可显著改善总体生存预后[152]。针对淋巴结转移风险(约33%病例),区域性淋巴结放射治疗(包括淋巴引流区清扫术后补充放疗)可有效降低复发相关死亡风险,尤其在存在多发性淋巴结转移或大体积转移灶(直径 > 3 cm)的高危群体中具有重要治疗价值[153]

3.6. 其他神经内分泌肿瘤的放疗

在晚期神经内分泌肿瘤综合治疗体系中,放射治疗主要发挥局部病灶控制和症状缓解的双重作用。临床决策需基于多维度评估,包括肿瘤负荷分布、组织学分级及分子特征等生物学指标。

4. 心理干预

心理社会因素在肿瘤发生演进及预后调控中具有明确的病理生理学意义,有一项纳入了198项研究的荟萃分析指出心理干预对情绪困扰的肿瘤患者的生活质量有显著的、小到中等的影响[154]。也有研究提出心理社会干预通过神经内分泌–免疫通路(如下调皮质醇、提升NK细胞活性)影响肿瘤生物学行为的机制[155]。临床观察显示,肿瘤患者在诊断、治疗及康复各阶段均可出现多维度的心理应激反应,这要求临床工作者建立覆盖全病程的动态筛查体系,精准识别患者特异的心理社会需求并实施分层干预策略。国际权威指南(如NCCN痛苦管理指南)强调[156],应在初诊时建立基线心理评估,并在治疗节点转换、疾病进展等关键阶段进行周期性再评估。值得注意的是,临床实践中需严格鉴别适应性心理反应(如情境性焦虑、预期性悲伤)与符合诊断标准的精神障碍(如广泛性焦虑症、重度抑郁发作),后者常伴随治疗依从性下降、症状感知放大及不良预后风险增加,ESMO指南明确指出此类患者群体需优先获得精神心理专科介入[157]

肿瘤心理干预体系包含多层级支持方案:基础层面通过疾病认知重构及适应性技能训练增强患者的自我管理能力;中层级干预采用认知行为疗法修正负性自动化思维,结合正念减压训练改善情绪调节功能;针对终末期等特殊情境,可实施意义中心疗法或尊严治疗等人本主义干预模式。社会支持网络的构建亦不可或缺,包括建立病友互助联盟、完善照护者教育体系、整合社区慈善资源等系统性工程。现代肿瘤诊疗强调将心理社会肿瘤学专家纳入多学科团队(MDT) [158],通过生物–心理–社会–灵性多维评估模型,制定个体化整合照护方案,这不仅能优化患者生存质量,更有望通过心身交互机制影响疾病生物学进程,形成更具循证依据的精准医疗范式。

5. 结论

神经内分泌肿瘤(NENs)的临床管理因生物学异质性、诊断复杂性及治疗选择多样性面临严峻挑战。传统治疗模式以手术、化疗及生长抑素类似物为基础,但随着分子机制研究的深入,治疗策略已逐步转向靶向药物、核素治疗及多学科协作的个体化精准模式。未来需进一步解析驱动突变与肿瘤微环境特征,推动新型生物标志物与跨机制联合疗法的开发,同时整合人工智能、液体活检等技术优化早期诊断与动态监测体系。尽管在免疫耐药性、长期毒性管理等方面仍存瓶颈,通过全球协作网络与创新临床试验设计,NENs诊疗有望实现从“疾病控制”到“个体化治愈”的跨越,为患者提供更高效、安全的全程管理方案。

NOTES

*通讯作者。

参考文献

[1] Gaudenzi, G., Carra, S., Dicitore, A., Cantone, M.C., Persani, L. and Vitale, G. (2020) Fishing for Neuroendocrine Tumors. Endocrine-Related Cancer, 27, R163-R176.
https://doi.org/10.1530/erc-19-0437
[2] Cives, M. and Strosberg, J.R. (2018) Gastroenteropancreatic Neuroendocrine Tumors. CA: A Cancer Journal for Clinicians, 68, 471-487.
https://doi.org/10.3322/caac.21493
[3] Hofland, J., Falconi, M., Christ, E., Castaño, J.P., Faggiano, A., Lamarca, A., et al. (2023) European Neuroendocrine Tumor Society 2023 Guidance Paper for Functioning Pancreatic Neuroendocrine Tumour Syndromes. Journal of Neuroendocrinology, 35, e13318.
https://doi.org/10.1111/jne.13318
[4] Crona, J., Norlén, O., Antonodimitrakis, P., Welin, S., Stålberg, P. and Eriksson, B. (2016) Multiple and Secondary Hormone Secretion in Patients with Metastatic Pancreatic Neuroendocrine Tumours. The Journal of Clinical Endocrinology & Metabolism, 101, 445-452.
https://doi.org/10.1210/jc.2015-2436
[5] Kaltsas, G.A., Besser, G.M. and Grossman, A.B. (2004) The Diagnosis and Medical Management of Advanced Neuroendocrine Tumors. Endocrine Reviews, 25, 458-511.
https://doi.org/10.1210/er.2003-0014
[6] Chang, J.S., Chen, L., Shan, Y., Chu, P., Tsai, C. and Tsai, H. (2021) Scientific Reports, 11, Article No. 7881.
https://doi.org/10.1038/s41598-021-86839-2
[7] Dasari, A., Shen, C., Halperin, D., Zhao, B., Zhou, S., Xu, Y., et al. (2017) Trends in the Incidence, Prevalence, and Survival Outcomes in Patients with Neuroendocrine Tumors in the United States. JAMA Oncology, 3, 1335-1342.
https://doi.org/10.1001/jamaoncol.2017.0589
[8] Huguet, I., Grossman, A.B. and O'Toole, D. (2015) Changes in the Epidemiology of Neuroendocrine Tumours. Neuroendocrinology, 104, 105-111.
https://doi.org/10.1159/000441897
[9] Fang, C., Wang, W., Zhang, Y., Feng, X., Sun, J., Zeng, Y., et al. (2017) Clinicopathologic Characteristics and Prognosis of Gastroenteropancreatic Neuroendocrine Neoplasms: A Multicenter Study in South China. Chinese Journal of Cancer, 36, Article No. 51.
https://doi.org/10.1186/s40880-017-0218-3
[10] Fan, J., Zhang, Y., Shi, S., Chen, Y., Yuan, X., Jiang, L., et al. (2017) A Nation-Wide Retrospective Epidemiological Study of Gastroenteropancreatic Neuroendocrine Neoplasms in China. Oncotarget, 8, 71699-71708.
https://doi.org/10.18632/oncotarget.17599
[11] Modlin, I.M., Oberg, K., Chung, D.C., Jensen, R.T., de Herder, W.W., Thakker, R.V., et al. (2008) Gastroenteropancreatic neuroendocrine tumours. The Lancet Oncology, 9, 61-72.
https://doi.org/10.1016/s1470-2045(07)70410-2
[12] Yao, J.C., Hassan, M., Phan, A., Dagohoy, C., Leary, C., Mares, J.E., et al. (2008) One Hundred Years after “Carcinoid”: Epidemiology of and Prognostic Factors for Neuroendocrine Tumors in 35,825 Cases in the United States. Journal of Clinical Oncology, 26, 3063-3072.
https://doi.org/10.1200/jco.2007.15.4377
[13] Rothenstein, J., Cleary, S.P., Pond, G.R., Dale, D., Gallinger, S., Moore, M.J., et al. (2008) Neuroendocrine Tumors of the Gastrointestinal Tract: A Decade of Experience at the Princess Margaret Hospital. American Journal of Clinical Oncology, 31, 64-70.
https://doi.org/10.1097/coc.0b013e31807a2f49
[14] Silveira, F., Basile, M.L., Kuga, F.S., Próspero, J.D., Paes, R.A.P. and Bernardi, F.D.C. (2017) Neuroendocrine Tumors: An Epidemiological Study of 250 Cases at a Tertiary Hospital. Revista da Associação Médica Brasileira, 63, 856-861.
https://doi.org/10.1590/1806-9282.63.10.856
[15] Hitchcock, C.L., Bland, K.I., Laney, R.G., Franzini, D., Harris, B. and Copeland, E.M. (1988) Neuroendocrine (Merkel Cell) Carcinoma of the Skin. Annals of Surgery, 207, 201-207.
https://doi.org/10.1097/00000658-198802000-00015
[16] Baloch, Z.W. and LiVolsi, V.A. (2001) Neuroendocrine Tumors of the Thyroid Gland. Pathology Patterns Reviews, 115, S56-S67.
https://doi.org/10.1309/7nk9-vual-9wu2-kj19
[17] Berman, K.L., Kirsch, J., Bejarano, P., Drexler, I. and Martinez, F. (2020) Primary Neuroendocrine Tumor of the Thymus: Radiological and Pathological Correlation. Journal of Radiology Case Reports, 14, 1-11.
https://doi.org/10.3941/jrcr.v14i1.3737
[18] La Rosa, S. and Uccella, S. (2020) Classification of Neuroendocrine Neoplasms: Lights and Shadows. Reviews in Endocrine and Metabolic Disorders, 22, 527-538.
https://doi.org/10.1007/s11154-020-09612-2
[19] 中国抗癌协会神经内分泌肿瘤专业委员会. 中国抗癌协会神经内分泌肿瘤诊治指南(2025年版)[J]. 中国癌症杂志, 2025, 35(01): 85-142.
[20] Tan, E.H. (2011) Imaging of Gastroenteropancreatic Neuroendocrine Tumors. World Journal of Clinical Oncology, 2, 28-43.
https://doi.org/10.5306/wjco.v2.i1.28
[21] Sundin, A., Arnold, R., Baudin, E., Cwikla, J.B., Eriksson, B., Fanti, S., et al. (2017) ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Tumors: Radiological, Nuclear Medicine and Hybrid Imaging. Neuroendocrinology, 105, 212-244.
https://doi.org/10.1159/000471879
[22] Binderup, T., Knigge, U., Loft, A., Federspiel, B. and Kjaer, A. (2010) 18f-Fluorodeoxyglucose Positron Emission Tomography Predicts Survival of Patients with Neuroendocrine Tumors. Clinical Cancer Research, 16, 978-985.
https://doi.org/10.1158/1078-0432.ccr-09-1759
[23] Kwee, T.C., Basu, S., Saboury, B., Ambrosini, V., Torigian, D.A. and Alavi, A. (2011) A New Dimension of FDG-PET Interpretation: Assessment of Tumor Biology. European Journal of Nuclear Medicine and Molecular Imaging, 38, 1158-1170.
https://doi.org/10.1007/s00259-010-1713-9
[24] Kubota, K., Okasaki, M., Minamimoto, R., Miyata, Y., Morooka, M., Nakajima, K., et al. (2014) Lesion-Based Analysis of 18F-FDG Uptake and 111in-Pentetreotide Uptake by Neuroendocrine Tumors. Annals of Nuclear Medicine, 28, 1004-1010.
https://doi.org/10.1007/s12149-014-0900-3
[25] Bahri, H., Laurence, L., Edeline, J., Leghzali, H., Devillers, A., Raoul, J., et al. (2014) High Prognostic Value of 18F-FDG PET for Metastatic Gastroenteropancreatic Neuroendocrine Tumors: A Long-Term Evaluation. Journal of Nuclear Medicine, 55, 1786-1790.
https://doi.org/10.2967/jnumed.114.144386
[26] Schreiter, N.F., Bartels, A., Froeling, V., Steffen, I., Pape, U., Beck, A., et al. (2014) Searching for Primaries in Patients with Neuroendocrine Tumors (NET) of Unknown Primary and Clinically Suspected NET: Evaluation of Ga-68 DOTATOC PET/CT and In-111 DTPA Octreotide SPECT/CT. Radiology and Oncology, 48, 339-347.
https://doi.org/10.2478/raon-2014-0018
[27] Rindi, G., Mete, O., Uccella, S., Basturk, O., La Rosa, S., Brosens, L.A.A., et al. (2022) Overview of the 2022 WHO Classification of Neuroendocrine Neoplasms. Endocrine Pathology, 33, 115-154.
https://doi.org/10.1007/s12022-022-09708-2
[28] Tang, L.H., Basturk, O., Sue, J.J. and Klimstra, D.S. (2016) A Practical Approach to the Classification of WHO Grade 3 (G3) Well-Differentiated Neuroendocrine Tumor (WD-NET) and Poorly Differentiated Neuroendocrine Carcinoma (PD-NEC) of the Pancreas. American Journal of Surgical Pathology, 40, 1192-1202.
https://doi.org/10.1097/pas.0000000000000662
[29] Oronsky, B., Ma, P.C., Morgensztern, D. and Carter, C.A. (2017) Nothing but NET: A Review of Neuroendocrine Tumors and Carcinomas. Neoplasia, 19, 991-1002.
https://doi.org/10.1016/j.neo.2017.09.002
[30] Bellizzi, A.M. (2020) Immunohistochemistry in the Diagnosis and Classification of Neuroendocrine Neoplasms: What Can Brown Do for You? Human Pathology, 96, 8-33.
https://doi.org/10.1016/j.humpath.2019.12.002
[31] Elpek, G.O. (2022) Mixed Neuroendocrine-Nonneuroendocrine Neoplasms of the Gastrointestinal System: An Update. World Journal of Gastroenterology, 28, 794-810.
https://doi.org/10.3748/wjg.v28.i8.794
[32] So, H., Ko, S.W., Shin, S.H., Kim, E.H., Son, J., Ha, S., et al. (2023) Comparison of EUS-Guided Ablation and Surgical Resection for Nonfunctioning Small Pancreatic Neuroendocrine Tumors: A Propensity Score-Matching Study. Gastrointestinal Endoscopy, 97, 741-751.e1.
https://doi.org/10.1016/j.gie.2022.11.004
[33] Crinò, S.F., Napoleon, B., Facciorusso, A., Lakhtakia, S., Borbath, I., Caillol, F., et al. (2023) Endoscopic Ultrasound-Guided Radiofrequency Ablation versus Surgical Resection for Treatment of Pancreatic Insulinoma. Clinical Gastroenterology and Hepatology, 21, 2834-2843.e2.
https://doi.org/10.1016/j.cgh.2023.02.022
[34] Mayo, S.C., de Jong, M.C., Pulitano, C., Clary, B.M., Reddy, S.K., Gamblin, T.C., et al. (2010) Surgical Management of Hepatic Neuroendocrine Tumor Metastasis: Results from an International Multi-Institutional Analysis. Annals of Surgical Oncology, 17, 3129-3136.
https://doi.org/10.1245/s10434-010-1154-5
[35] Fiore, F., Del Prete, M., Franco, R., Marotta, V., Ramundo, V., Marciello, F., et al. (2014) Transarterial Embolization (TAE) Is Equally Effective and Slightly Safer than Transarterial Chemoembolization (TACE) to Manage Liver Metastases in Neuroendocrine Tumors. Endocrine, 47, 177-182.
https://doi.org/10.1007/s12020-013-0130-9
[36] Chen, L. and Chen, J. (2019) Perspective of Neo-Adjuvant/Conversion and Adjuvant Therapy for Pancreatic Neuroendocrine Tumors. Journal of Pancreatology, 2, 91-99.
https://doi.org/10.1097/jp9.0000000000000023
[37] Becker, J.C., Ugurel, S., Leiter, U., Meier, F., Gutzmer, R., Haferkamp, S., et al. (2023) Adjuvant Immunotherapy with Nivolumab versus Observation in Completely Resected Merkel Cell Carcinoma (ADMEC-O): Disease-Free Survival Results from a Randomised, Open-Label, Phase 2 Trial. The Lancet, 402, 798-808.
https://doi.org/10.1016/s0140-6736(23)00769-9
[38] Fottner, C., Apostolidis, L., Ferrata, M., Krug, S., Michl, P., Schad, A., et al. (2019) A Phase II, Open Label, Multicenter Trial of Avelumab in Patients with Advanced, Metastatic High-Grade Neuroendocrine Carcinomas NEC G3 (WHO 2010) Progressive after First-Line Chemotherapy (AVENEC). Journal of Clinical Oncology, 37, 4103-4103.
https://doi.org/10.1200/jco.2019.37.15_suppl.4103
[39] Caplin, M.E., Pavel, M., Ćwikła, J.B., Phan, A.T., Raderer, M., Sedláčková, E., et al. (2014) Lanreotide in Metastatic Enteropancreatic Neuroendocrine Tumors. New England Journal of Medicine, 371, 224-233.
https://doi.org/10.1056/nejmoa1316158
[40] Baudin, E., Capdevila, J., Hörsch, D., Singh, S., Caplin, M.E., Wolin, E.M., et al. (2024) Treatment of Advanced BP-NETS with Lanreotide Autogel/Depot vs Placebo: The Phase III SPINET Study. Endocrine-Related Cancer, 31, e230337.
https://doi.org/10.1530/erc-23-0337
[41] Chen, L., Liu, M., Zhang, Y., Guo, Y., Chen, M. and Chen, J. (2021) Genetic Characteristics of Colorectal Neuroendocrine Carcinoma: More Similar to Colorectal Adenocarcinoma. Clinical Colorectal Cancer, 20, 177-185.e13.
https://doi.org/10.1016/j.clcc.2020.09.001
[42] Chun, S.G., Simone, C.B., Amini, A., Chetty, I.J., Donington, J., Edelman, M.J., et al. (2021) American Radium Society Appropriate Use Criteria: Radiation Therapy for Limited-Stage SCLC 2020. Journal of Thoracic Oncology, 16, 66-75.
https://doi.org/10.1016/j.jtho.2020.10.020
[43] Parghane, R.V., Bhandare, M., Chaudhari, V., Ostwal, V., Ramaswamy, A., Talole, S., et al. (2021) Surgical Feasibility, Determinants, and Overall Efficacy of Neoadjuvant 177Lu-Dotatate PRRT for Locally Advanced Unresectable Gastroenteropancreatic Neuroendocrine Tumors. Journal of Nuclear Medicine, 62, 1558-1563.
https://doi.org/10.2967/jnumed.120.258772
[44] Baudin, E., Caplin, M., Garcia-Carbonero, R., Fazio, N., Ferolla, P., Filosso, P.L., et al. (2021) Lung and Thymic Carcinoids: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 32, 439-451.
https://doi.org/10.1016/j.annonc.2021.01.003
[45] Pavel, M., Öberg, K., Falconi, M., Krenning, E.P., Sundin, A., Perren, A., et al. (2020) Gastroenteropancreatic Neuroendocrine Neoplasms: ESMO Clinical Practice Guidelines for Diagnosis, Treatment and Follow-Up. Annals of Oncology, 31, 844-860.
https://doi.org/10.1016/j.annonc.2020.03.304
[46] Shulkin, B.L., Thompson, N.W., Shapiro, B., Francis, I.R. and Sisson, J.C. (1999) Pheochromocytomas: Imaging with 2-[Fluorine-18]Fluoro-2-Deoxy-D-Glucose Pet. Radiology, 212, 35-41.
https://doi.org/10.1148/radiology.212.1.r99jl3035
[47] Wolin, E.M. and Benson III, A.B. (2019) Systemic Treatment Options for Carcinoid Syndrome: A Systematic Review. Oncology, 96, 273-289.
https://doi.org/10.1159/000499049
[48] Broder, M.S. (2015) Gastrointestinal Neuroendocrine Tumors Treated with High Dose Octreotide-Lar: A Systematic Literature Review. World Journal of Gastroenterology, 21, 1945-1955.
https://doi.org/10.3748/wjg.v21.i6.1945
[49] Grozinsky‐Glasberg, S., Davar, J., Hofland, J., Dobson, R., Prasad, V., Pascher, A., et al. (2022) European Neuroendocrine Tumor Society (ENETS) 2022 Guidance Paper for Carcinoid Syndrome and Carcinoid Heart Disease. Journal of Neuroendocrinology, 34, e13146.
https://doi.org/10.1111/jne.13146
[50] Wolin, E., Jarzab, B., Eriksson, B., Walter, T., Toumpanakis, C., Morse, M.A., et al. (2015) Phase III Study of Pasireotide Long-Acting Release in Patients with Metastatic Neuroendocrine Tumors and Carcinoid Symptoms Refractory to Available Somatostatin Analogues. Drug Design, Development and Therapy, 9, 5075-5086.
https://doi.org/10.2147/dddt.s84177
[51] Fleseriu, M., Auchus, R., Bancos, I., Ben-Shlomo, A., Bertherat, J., Biermasz, N.R., et al. (2021) Consensus on Diagnosis and Management of Cushing's Disease: A Guideline Update. The Lancet Diabetes & Endocrinology, 9, 847-875.
https://doi.org/10.1016/s2213-8587(21)00235-7
[52] Trainer, P.J., Drake, W.M., Katznelson, L., Freda, P.U., Herman-Bonert, V., van der Lely, A.J., et al. (2000) Treatment of Acromegaly with the Growth Hormone-Receptor Antagonist Pegvisomant. New England Journal of Medicine, 342, 1171-1177.
https://doi.org/10.1056/nejm200004203421604
[53] Raverot, G., Burman, P., McCormack, A., Heaney, A., Petersenn, S., Popovic, V., et al. (2018) European Society of Endocrinology Clinical Practice Guidelines for the Management of Aggressive Pituitary Tumours and Carcinomas. European Journal of Endocrinology, 178, G1-G24.
https://doi.org/10.1530/eje-17-0796
[54] Singh, D., Sharma, D. and Agarwal, V. (2021) Screening of Anti-Microbial, Anti-Biofilm Activity, and Cytotoxicity Analysis of a Designed Polyherbal Formulation against Shigellosis. Journal of Ayurveda and Integrative Medicine, 12, 601-606.
https://doi.org/10.1016/j.jaim.2021.06.007
[55] Stueven, A.K., Kayser, A., Wetz, C., Amthauer, H., Wree, A., Tacke, F., et al. (2019) Somatostatin Analogues in the Treatment of Neuroendocrine Tumors: Past, Present and Future. International Journal of Molecular Sciences, 20, Article 3049.
https://doi.org/10.3390/ijms20123049
[56] Giustina, A., Barkhoudarian, G., Beckers, A., Ben-Shlomo, A., Biermasz, N., Biller, B., et al. (2020) Multidisciplinary Management of Acromegaly: A Consensus. Reviews in Endocrine and Metabolic Disorders, 21, 667-678.
https://doi.org/10.1007/s11154-020-09588-z
[57] Petersenn, S., Fleseriu, M., Casanueva, F.F., Giustina, A., Biermasz, N., Biller, B.M.K., et al. (2023) Diagnosis and Management of Prolactin-Secreting Pituitary Adenomas: A Pituitary Society International Consensus Statement. Nature Reviews Endocrinology, 19, 722-740.
https://doi.org/10.1038/s41574-023-00886-5
[58] Delivanis, D.A., Sharma, A., Hamidi, O., Shah, M. and Bancos, I. (2020) Advances in the Diagnosis and Medical Management of Cushing’s Syndrome. In: Shifrin, A.L., Ed., Advances in Treatment and Management in Surgical Endocrinology, Elsevier, 151-174.
https://doi.org/10.1016/b978-0-323-66195-9.00015-7
[59] Shah, M.H., Goldner, W.S., Halfdanarson, T.R., Bergsland, E., Berlin, J.D., Halperin, D., et al. (2018) NCCN Guidelines Insights: Neuroendocrine and Adrenal Tumors, Version 2.2018. Journal of the National Comprehensive Cancer Network, 16, 693-702.
https://doi.org/10.6004/jnccn.2018.0056
[60] Feki, J., Fourati, N., Mnif, H., Khabir, A., Toumi, N., Khanfir, A., et al. (2015) Tumeurs neuroendocrines primitives du sein: Étude rétrospective de 21 cas et revue de la littérature. Cancer/Radiothérapie, 19, 308-312.
https://doi.org/10.1016/j.canrad.2015.04.003
[61] Yao, J.C., Fazio, N., Singh, S., Buzzoni, R., Carnaghi, C., Wolin, E., et al. (2016) Everolimus for the Treatment of Advanced, Non-Functional Neuroendocrine Tumours of the Lung or Gastrointestinal Tract (RADIANT-4): A Randomised, Placebo-Controlled, Phase 3 Study. The Lancet, 387, 968-977.
https://doi.org/10.1016/s0140-6736(15)00817-x
[62] Yao, J.C., Pavel, M., Lombard-Bohas, C., Van Cutsem, E., Voi, M., Brandt, U., et al. (2016) Everolimus for the Treatment of Advanced Pancreatic Neuroendocrine Tumors: Overall Survival and Circulating Biomarkers from the Randomized, Phase III RADIANT-3 Study. Journal of Clinical Oncology, 34, 3906-3913.
https://doi.org/10.1200/jco.2016.68.0702
[63] Pavel, M.E., Hainsworth, J.D., Baudin, E., Peeters, M., Hörsch, D., Winkler, R.E., et al. (2011) Everolimus Plus Octreotide Long-Acting Repeatable for the Treatment of Advanced Neuroendocrine Tumours Associated with Carcinoid Syndrome (RADIANT-2): A Randomised, Placebo-Controlled, Phase 3 Study. The Lancet, 378, 2005-2012.
https://doi.org/10.1016/s0140-6736(11)61742-x
[64] Fazio, N., Granberg, D., Grossman, A., Saletan, S., Klimovsky, J., Panneerselvam, A., et al. (2013) Everolimus Plus Octreotide Long-Acting Repeatable in Patients with Advanced Lung Neuroendocrine Tumors: Analysis of the Phase 3, Randomized, Placebo-Controlled RADIANT-2 Study. Chest, 143, 955-962.
https://doi.org/10.1378/chest.12-1108
[65] Pavel, M.E., Baudin, E., Öberg, K.E., Hainsworth, J.D., Voi, M., Rouyrre, N., et al. (2019) Efficacy of Everolimus Plus Octreotide LAR in Patients with Advanced Neuroendocrine Tumor and Carcinoid Syndrome: Final Overall Survival from the Randomized, Placebo-Controlled Phase 3 RADIANT-2 Study. Annals of Oncology, 30, 2010.
https://doi.org/10.1093/annonc/mdz222
[66] Raymond, E., Dahan, L., Raoul, J., Bang, Y., Borbath, I., Lombard-Bohas, C., et al. (2011) Sunitinib Malate for the Treatment of Pancreatic Neuroendocrine Tumors. New England Journal of Medicine, 364, 501-513.
https://doi.org/10.1056/nejmoa1003825
[67] Xu, J., Shen, L., Zhou, Z., Li, J., Bai, C., Chi, Y., et al. (2020) Surufatinib in Advanced Extrapancreatic Neuroendocrine Tumours (sanet-Ep): A Randomised, Double-Blind, Placebo-Controlled, Phase 3 Study. The Lancet Oncology, 21, 1500-1512.
https://doi.org/10.1016/s1470-2045(20)30496-4
[68] Corti, F., Brizzi, M.P., Amoroso, V., Giuffrida, D., Panzuto, F., Campana, D., et al. (2023) Assessing the Safety and Activity of Cabozantinib Combined with Lanreotide in Gastroenteropancreatic and Thoracic Neuroendocrine Tumors: Rationale and Protocol of the Phase II LOLA Trial. BMC Cancer, 23, Article No. 908.
https://doi.org/10.1186/s12885-023-11287-2
[69] Grande, E., Teulé, A., Alonso-Gordoa, T., Jiménez-Fonseca, P., Benavent, M., Capdevila, J., et al. (2020) The PALBONET Trial: A Phase II Study of Palbociclib in Metastatic Grade 1 and 2 Pancreatic Neuroendocrine Tumors (Getne-1407). The Oncologist, 25, 745-e1265.
https://doi.org/10.1634/theoncologist.2020-0033
[70] Wang, Y., Jin, K., Tan, H., Zhang, P., Yang, Q., Wang, W., et al. (2017) Sunitinib Is Effective and Tolerable in Chinese Patients with Advanced Pancreatic Neuroendocrine Tumors: A Multicenter Retrospective Study in China. Cancer Chemotherapy and Pharmacology, 80, 507-516.
https://doi.org/10.1007/s00280-017-3367-9
[71] ElSayed, N.A., Aleppo, G., Aroda, V.R., Bannuru, R.R., Brown, F.M., Bruemmer, D., et al. (2022) Introduction and Methodology: Standards of Care in Diabetes—2023. Diabetes Care, 46, S1-S4.
https://doi.org/10.2337/dc23-sint
[72] Mach, F., Baigent, C., Catapano, A.L., Koskinas, K.C., Casula, M., Badimon, L., et al. (2019) 2019 ESC/EAS Guidelines for the Management of Dyslipidaemias: Lipid Modification to Reduce Cardiovascular Risk: The Task Force for the Management of Dyslipidaemias of the European Society of Cardiology (ESC) and European Atherosclerosis Society (EAS). European Heart Journal, 41, 111-188.
https://doi.org/10.1093/eurheartj/ehz455
[73] Jain, S.K. (2023) New Approaches for Imaging Bacteria. Seminars in Nuclear Medicine, 53, 138-141.
https://doi.org/10.1053/j.semnuclmed.2022.12.002
[74] Lyon, A.R., López-Fernández, T., Couch, L.S., Asteggiano, R., Aznar, M.C., Bergler-Klein, J., et al. (2022) 2022 ESC Guidelines on Cardio-Oncology Developed in Collaboration with the European Hematology Association (EHA), the European Society for Therapeutic Radiology and Oncology (ESTRO) and the International Cardio-Oncology Society (IC-OS): Developed by the Task Force on Cardio-Oncology of the European Society of Cardiology (ESC). European Heart Journal, 43, 4229-4361.
https://doi.org/10.1093/eurheartj/ehac244
[75] Kunz, P.L., Graham, N.T., Catalano, P.J., Nimeiri, H.S., Fisher, G.A., Longacre, T.A., et al. (2023) Randomized Study of Temozolomide or Temozolomide and Capecitabine in Patients with Advanced Pancreatic Neuroendocrine Tumors (ECOG-ACRIN E2211). Journal of Clinical Oncology, 41, 1359-1369.
https://doi.org/10.1200/jco.22.01013
[76] Wang, W., Zhang, Y., Peng, Y., Jin, K., Li, Y., Liang, Y., et al. (2020) A Ki-67 Index to Predict Treatment Response to the Capecitabine/Temozolomide Regimen in Neuroendocrine Neoplasms: A Retrospective Multicenter Study. Neuroendocrinology, 111, 752-763.
https://doi.org/10.1159/000510159
[77] Al-Toubah, T., Morse, B., Pelle, E. and Strosberg, J. (2020) Efficacy of FOLFOX in Patients with Aggressive Pancreatic Neuroendocrine Tumors after Prior Capecitabine/temozolomide. The Oncologist, 26, 115-119.
https://doi.org/10.1002/onco.13611
[78] Girot, P., Baudin, E., Senellart, H., Bouarioua, N., Hentic, O., Guimbaud, R., et al. (2021) Oxaliplatin and 5-Fluorouracil in Advanced Well-Differentiated Digestive Neuroendocrine Tumors: A Multicenter National Retrospective Study from the French Group of Endocrine Tumors. Neuroendocrinology, 112, 537-546.
https://doi.org/10.1159/000518650
[79] Lamarca, A., Elliott, E., Barriuso, J., Backen, A., McNamara, M.G., Hubner, R., et al. (2016) Chemotherapy for Advanced Non-Pancreatic Well-Differentiated Neuroendocrine Tumours of the Gastrointestinal Tract, a Systematic Review and Meta-Analysis: A Lost Cause? Cancer Treatment Reviews, 44, 26-41.
https://doi.org/10.1016/j.ctrv.2016.01.005
[80] Apostolidis, L., Dal Buono, A., Merola, E., Jann, H., Jäger, D., Wiedenmann, B., et al. (2021) Multicenter Analysis of Treatment Outcomes for Systemic Therapy in Well Differentiated Grade 3 Neuroendocrine Tumors (NET G3). Cancers, 13, Article 1936.
https://doi.org/10.3390/cancers13081936
[81] Sorbye, H., Welin, S., Langer, S.W., Vestermark, L.W., Holt, N., Osterlund, P., et al. (2013) Predictive and Prognostic Factors for Treatment and Survival in 305 Patients with Advanced Gastrointestinal Neuroendocrine Carcinoma (WHO G3): The NORDIC NEC Study. Annals of Oncology, 24, 152-160.
https://doi.org/10.1093/annonc/mds276
[82] Raverot, G., Ilie, M.D., Lasolle, H., Amodru, V., Trouillas, J., Castinetti, F., et al. (2021) Aggressive Pituitary Tumours and Pituitary Carcinomas. Nature Reviews Endocrinology, 17, 671-684.
https://doi.org/10.1038/s41574-021-00550-w
[83] Lugowska, I., Becker, J.C., Ascierto, P.A., Veness, M., Blom, A., Lebbe, C., et al. (2024) Merkel-Cell Carcinoma: ESMO-EURACAN Clinical Practice Guideline for Diagnosis, Treatment and Follow-Up. ESMO Open, 9, Article ID: 102977.
https://doi.org/10.1016/j.esmoop.2024.102977
[84] Ferrara, M.G., Stefani, A., Simbolo, M., Pilotto, S., Martini, M., Lococo, F., et al. (2021) Large Cell Neuro-Endocrine Carcinoma of the Lung: Current Treatment Options and Potential Future Opportunities. Frontiers in Oncology, 11, Article 650293.
https://doi.org/10.3389/fonc.2021.650293
[85] Riely, G.J., Wood, D.E., Ettinger, D.S., et al. (2024) Non-Small Cell Lung Cancer, Version 4.2024, NCCN Clinical Practice Guidelines in Oncology. Journal of the National Comprehensive Cancer Network, 22, 249-274.
[86] Skarlos, D.V., Samantas, E., Briassoulis, E., Panoussaki, E., Pavlidis, N., Kalofonos, H.P., et al. (2001) Randomized Comparison of Early versus Late Hyperfractionated Thoracic Irradiation Concurrently with Chemotherapy in Limited Disease Small-Cell Lung Cancer: A Randomized Phase II Study of the Hellenic Cooperative Oncology Group (HECOG). Annals of Oncology, 12, 1231-1238.
https://doi.org/10.1023/a:1012295131640
[87] Faivre-Finn, C., Snee, M., Ashcroft, L., Appel, W., Barlesi, F., Bhatnagar, A., et al. (2017) Concurrent Once-Daily versus Twice-Daily Chemoradiotherapy in Patients with Limited-Stage Small-Cell Lung Cancer (CONVERT): An Open-Label, Phase 3, Randomised, Superiority Trial. The Lancet Oncology, 18, 1116-1125.
https://doi.org/10.1016/s1470-2045(17)30318-2
[88] Cheng, Y., Spigel, D.R., Cho, B.C., Laktionov, K.K., Fang, J., Chen, Y., et al. (2024) Durvalumab after Chemoradiotherapy in Limited-Stage Small-Cell Lung Cancer. New England Journal of Medicine, 391, 1313-1327.
https://doi.org/10.1056/nejmoa2404873
[89] Horn, L., Mansfield, A.S., Szczęsna, A., Havel, L., Krzakowski, M., Hochmair, M.J., et al. (2018) First-line Atezolizumab Plus Chemotherapy in Extensive-Stage Small-Cell Lung Cancer. New England Journal of Medicine, 379, 2220-2229.
https://doi.org/10.1056/nejmoa1809064
[90] Paz-Ares, L., Dvorkin, M., Chen, Y., Reinmuth, N., Hotta, K., Trukhin, D., et al. (2019) Durvalumab Plus Platinum-Etoposide versus Platinum-Etoposide in First-Line Treatment of Extensive-Stage Small-Cell Lung Cancer (CASPIAN): A Randomised, Controlled, Open-Label, Phase 3 Trial. The Lancet, 394, 1929-1939.
https://doi.org/10.1016/s0140-6736(19)32222-6
[91] Cheng, Y., Han, L., Wu, L., Chen, J., Sun, H., Wen, G., et al. (2022) Effect of First-Line Serplulimab vs Placebo Added to Chemotherapy on Survival in Patients with Extensive-Stage Small Cell Lung Cancer: The ASTRUM-005 Randomized Clinical Trial. JAMA, 328, 1223-1232.
https://doi.org/10.1001/jama.2022.16464
[92] Wang, J., Zhou, C., Yao, W., Wang, Q., Min, X., Chen, G., et al. (2022) Adebrelimab or Placebo Plus Carboplatin and Etoposide as First-Line Treatment for Extensive-Stage Small-Cell Lung Cancer (CAPSTONE-1): A Multicentre, Randomised, Double-Blind, Placebo-Controlled, Phase 3 Trial. The Lancet Oncology, 23, 739-747.
https://doi.org/10.1016/s1470-2045(22)00224-8
[93] Evans, W.K., Shepherd, F.A., Feld, R., Osoba, D., Dang, P. and Deboer, G. (1985) VP-16 and Cisplatin as First-Line Therapy for Small-Cell Lung Cancer. Journal of Clinical Oncology, 3, 1471-1477.
https://doi.org/10.1200/jco.1985.3.11.1471
[94] Okamoto, H., Watanabe, K., Nishiwaki, Y., Mori, K., Kurita, Y., Hayashi, I., et al. (1999) Phase II Study of Area under the Plasma-Concentration-Versus-Time Curve-Based Carboplatin Plus Standard-Dose Intravenous Etoposide in Elderly Patients with Small-Cell Lung Cancer. Journal of Clinical Oncology, 17, 3540-3545.
https://doi.org/10.1200/jco.1999.17.11.3540
[95] Noda, K., Nishiwaki, Y., Kawahara, M., Negoro, S., Sugiura, T., Yokoyama, A., et al. (2002) Irinotecan Plus Cisplatin Compared with Etoposide Plus Cisplatin for Extensive Small-Cell Lung Cancer. New England Journal of Medicine, 346, 85-91.
https://doi.org/10.1056/nejmoa003034
[96] Schmittel, A., von Weikersthal, L.F., Sebastian, M., Martus, P., Schulze, K., Hortig, P., et al. (2006) A Randomized Phase II Trial of Irinotecan Plus Carboplatin versus Etoposide Plus Carboplatin Treatment in Patients with Extended Disease Small-Cell Lung Cancer. Annals of Oncology, 17, 663-667.
https://doi.org/10.1093/annonc/mdj137
[97] Cheng, Y., Wang, Q., Li, K., Shi, J., Liu, Y., Wu, L., et al. (2021) Anlotinib vs Placebo as Third-Or Further-Line Treatment for Patients with Small Cell Lung Cancer: A Randomised, Double-Blind, Placebo-Controlled Phase 2 Study. British Journal of Cancer, 125, 366-371.
https://doi.org/10.1038/s41416-021-01356-3
[98] Moertel, C.G., Kvols, L.K., O'Connell, M.J. and Rubin, J. (1991) Treatment of Neuroendocrine Carcinomas with Combined Etoposide and Cisplatin. Evidence of Major Therapeutic Activity in the Anaplastic Variants of These Neoplasms. Cancer, 68, 227-232.
https://doi.org/10.1002/1097-0142(19910715)68:2<227::aid-cncr2820680202>3.0.co;2-i
[99] Fine, R.L., Gulati, A.P., Krantz, B.A., Moss, R.A., Schreibman, S., Tsushima, D.A., et al. (2013) Capecitabine and Temozolomide (CAPTEM) for Metastatic, Well-Differentiated Neuroendocrine Cancers: The Pancreas Center at Columbia University Experience. Cancer Chemotherapy and Pharmacology, 71, 663-670.
https://doi.org/10.1007/s00280-012-2055-z
[100] Zhang, P., Li, J., Li, J., Zhang, X., Zhou, J., Wang, X., et al. (2020) Etoposide and Cisplatin versus Irinotecan and Cisplatin as the First‐line Therapy for Patients with Advanced, Poorly Differentiated Gastroenteropancreatic Neuroendocrine Carcinoma: A Randomized Phase 2 Study. Cancer, 126, 2086-2092.
https://doi.org/10.1002/cncr.32750
[101] Chantrill, L.A., Ransom, D., Chan, D., Nagrial, A., Pavlakis, N., Markman, B., et al. (2024) NABNEC: A Randomised Phase II Study of nab-Paclitaxel in Combination with Carboplatin as First Line Treatment of Gastrointestinal Neuroendocrine Carcinomas (GI-NECs). Journal of Clinical Oncology, 42, 589-589.
https://doi.org/10.1200/jco.2024.42.3_suppl.589
[102] Bajetta, E., Catena, L., Procopio, G., De Dosso, S., Bichisao, E., Ferrari, L., et al. (2006) Are Capecitabine and Oxaliplatin (XELOX) Suitable Treatments for Progressing Low-Grade and High-Grade Neuroendocrine Tumours? Cancer Chemotherapy and Pharmacology, 59, 637-642.
https://doi.org/10.1007/s00280-006-0306-6
[103] Okita, N.T., Kato, K., Takahari, D., Hirashima, Y., Nakajima, T.E., Matsubara, J., et al. (2011) Neuroendocrine Tumors of the Stomach: Chemotherapy with Cisplatin Plus Irinotecan Is Effective for Gastric Poorly-Differentiated Neuroendocrine Carcinoma. Gastric Cancer, 14, 161-165.
https://doi.org/10.1007/s10120-011-0025-5
[104] McNamara, M.G., Swain, J., Craig, Z., Sharma, R., Faluyi, O., Wadsley, J., et al. (2023) NET-02: A Randomised, Non-Comparative, Phase II Trial of Nal-IRI/5-FU or Docetaxel as Second-Line Therapy in Patients with Progressive Poorly Differentiated Extra-Pulmonary Neuroendocrine Carcinoma. eClinicalMedicine, 60, Article ID: 102015.
https://doi.org/10.1016/j.eclinm.2023.102015
[105] Le, D.T., Durham, J.N., Smith, K.N., Wang, H., Bartlett, B.R., Aulakh, L.K., et al. (2017) Mismatch Repair Deficiency Predicts Response of Solid Tumors to PD-1 Blockade. Science, 357, 409-413.
https://doi.org/10.1126/science.aan6733
[106] Mulvey, C., Raj, N.P., Chan, J.A., Aggarwal, R.R., Cinar, P., Hope, T.A., et al. (2019) Phase II Study of Pembrolizumab-Based Therapy in Previously Treated Extrapulmonary Poorly Differentiated Neuroendocrine Carcinomas: Results of Part a (Pembrolizumab Alone). Journal of Clinical Oncology, 37, 363-363.
https://doi.org/10.1200/jco.2019.37.4_suppl.363
[107] Klein, O., Kee, D., Markman, B., Michael, M., Underhill, C., Carlino, M.S., et al. (2020) Immunotherapy of Ipilimumab and Nivolumab in Patients with Advanced Neuroendocrine Tumors: A Subgroup Analysis of the CA209-538 Clinical Trial for Rare Cancers. Clinical Cancer Research, 26, 4454-4459.
https://doi.org/10.1158/1078-0432.ccr-20-0621
[108] Lu, M., Zhang, P., Zhang, Y., Li, Z., Gong, J., Li, J., et al. (2020) Efficacy, Safety, and Biomarkers of Toripalimab in Patients with Recurrent or Metastatic Neuroendocrine Neoplasms: A Multiple-Center Phase IB Trial. Clinical Cancer Research, 26, 2337-2345.
https://doi.org/10.1158/1078-0432.ccr-19-4000
[109] Yao, J.C., Jonathan, S., Nicola, F., et al. (2021) Spartalizumab in Metastatic, Well/Poorly-Differentiated Neuroendocrine Neoplasms. Endocrine-Related Cancer.
[110] Hicks, R.J., Kwekkeboom, D.J., Krenning, E., Bodei, L., Grozinsky-Glasberg, S., Arnold, R., et al. (2017) ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Neoplasms: Peptide Receptor Radionuclide Therapy with Radiolabelled Somatostatin Analogues. Neuroendocrinology, 105, 295-309.
https://doi.org/10.1159/000475526
[111] Strosberg, J., El-Haddad, G., Wolin, E., Hendifar, A., Yao, J., Chasen, B., et al. (2017) Phase 3 Trial of 177Lu-Dotatate for Midgut Neuroendocrine Tumors. New England Journal of Medicine, 376, 125-135.
https://doi.org/10.1056/nejmoa1607427
[112] Carlsen, E.A., Fazio, N., Granberg, D., Grozinsky-Glasberg, S., Ahmadzadehfar, H., Grana, C.M., et al. (2019) Peptide Receptor Radionuclide Therapy in Gastroenteropancreatic NEN G3: A Multicenter Cohort Study. Endocrine-Related Cancer, 26, 227-239.
https://doi.org/10.1530/erc-18-0424
[113] Strosberg, J.R., Caplin, M.E., Kunz, P.L., Ruszniewski, P.B., Bodei, L., Hendifar, A., et al. (2021) 177Lu-Dotatate Plus Long-Acting Octreotide versus Highdose Long-Acting Octreotide in Patients with Midgut Neuroendocrine Tumours (NETTER-1): Final Overall Survival and Long-Term Safety Results from an Open-Label, Randomised, Controlled, Phase 3 Trial. The Lancet Oncology, 22, 1752-1763.
https://doi.org/10.1016/s1470-2045(21)00572-6
[114] Brabander, T., van der Zwan, W.A., Teunissen, J.J.M., Kam, B.L.R., Feelders, R.A., de Herder, W.W., et al. (2017) Long-Term Efficacy, Survival, and Safety of [177Lu-DOTA0, Tyr3]Octreotate in Patients with Gastroenteropancreatic and Bronchial Neuroendocrine Tumors. Clinical Cancer Research, 23, 4617-4624.
https://doi.org/10.1158/1078-0432.ccr-16-2743
[115] Mak, I.Y.F., Hayes, A.R., Khoo, B. and Grossman, A. (2019) Peptide Receptor Radionuclide Therapy as a Novel Treatment for Metastatic and Invasive Phaeochromocytoma and Paraganglioma. Neuroendocrinology, 109, 287-298.
https://doi.org/10.1159/000499497
[116] Pavel, M., Valle, J.W., Eriksson, B., Rinke, A., Caplin, M., Chen, J., et al. (2017) ENETS Consensus Guidelines for the Standards of Care in Neuroendocrine Neoplasms: Systemic Therapy-Biotherapy and Novel Targeted Agents. Neuroendocrinology, 105, 266-280.
https://doi.org/10.1159/000471880
[117] Rinke, A., Müller, H., Schade-Brittinger, C., Klose, K., Barth, P., Wied, M., et al. (2009) Placebo-controlled, Double-Blind, Prospective, Randomized Study on the Effect of Octreotide LAR in the Control of Tumor Growth in Patients with Metastatic Neuroendocrine Midgut Tumors: A Report from the PROMID Study Group. Journal of Clinical Oncology, 27, 4656-4663.
https://doi.org/10.1200/jco.2009.22.8510
[118] Puccini, A., Poorman, K., Salem, M.E., Soldato, D., Seeber, A., Goldberg, R.M., et al. (2020) Comprehensive Genomic Profiling of Gastroenteropancreatic Neuroendocrine Neoplasms (GEP-NENs). Clinical Cancer Research, 26, 5943-5951.
https://doi.org/10.1158/1078-0432.ccr-20-1804
[119] Boilève, A., Faron, M., Fodil-Cherif, S., Bayle, A., Lamartina, L., Planchard, D., et al. (2023) Molecular Profiling and Target Actionability for Precision Medicine in Neuroendocrine Neoplasms: Real-World Data. European Journal of Cancer, 186, 122-132.
https://doi.org/10.1016/j.ejca.2023.03.024
[120] Strosberg, J., Mizuno, N., Doi, T., Grande, E., Delord, J., Shapira-Frommer, R., et al. (2020) Efficacy and Safety of Pembrolizumab in Previously Treated Advanced Neuroendocrine Tumors: Results from the Phase II KEYNOTE-158 Study. Clinical Cancer Research, 26, 2124-2130.
https://doi.org/10.1158/1078-0432.ccr-19-3014
[121] Capdevila, J., Hernando, J., Teule, A., Lopez, C., Garcia-Carbonero, R., Benavent, M., et al. (2023) Durvalumab Plus Tremelimumab for the Treatment of Advanced Neuroendocrine Neoplasms of Gastroenteropancreatic and Lung Origin. Nature Communications, 14, Article No. 2973.
https://doi.org/10.1038/s41467-023-38611-5
[122] Becker, J.C., Stang, A., DeCaprio, J.A., Cerroni, L., Lebbé, C., Veness, M., et al. (2017) Merkel Cell Carcinoma. Nature Reviews Disease Primers, 3, Article No. 17077.
https://doi.org/10.1038/nrdp.2017.77
[123] Nghiem, P.T., Bhatia, S., Lipson, E.J., Kudchadkar, R.R., Miller, N.J., Annamalai, L., et al. (2016) PD-1 Blockade with Pembrolizumab in Advanced Merkel-Cell Carcinoma. New England Journal of Medicine, 374, 2542-2552.
https://doi.org/10.1056/nejmoa1603702
[124] Nghiem, P., Bhatia, S., Lipson, E.J., Sharfman, W.H., Kudchadkar, R.R., Brohl, A.S., et al. (2021) Three-Year Survival, Correlates and Salvage Therapies in Patients Receiving First-Line Pembrolizumab for Advanced Merkel Cell Carcinoma. Journal for ImmunoTherapy of Cancer, 9, e002478.
https://doi.org/10.1136/jitc-2021-002478
[125] Kim, S., Wuthrick, E., Blakaj, D., Eroglu, Z., Verschraegen, C., Thapa, R., et al. (2022) Combined Nivolumab and Ipilimumab with or without Stereotactic Body Radiation Therapy for Advanced Merkel Cell Carcinoma: A Randomised, Open Label, Phase 2 Trial. The Lancet, 400, 1008-1019.
https://doi.org/10.1016/s0140-6736(22)01659-2
[126] Strosberg, J.R., Mizuno, N., Doi, T., Grande, E., Delord, J., Shapira-Frommer, R., et al. (2019) Pembrolizumab Treatment of Advanced Neuroendocrine Tumors: Results from the Phase II KEYNOTE-158 Study. Journal of Clinical Oncology, 37, 190-190.
https://doi.org/10.1200/jco.2019.37.4_suppl.190
[127] van der Laan, T.P., Iepsma, R., Witjes, M.J.H., van der Laan, B.F.A.M., Plaat, B.E.C. and Halmos, G.B. (2016) Meta-analysis of 701 Published Cases of Sinonasal Neuroendocrine Carcinoma: The Importance of Differentiation Grade in Determining Treatment Strategy. Oral Oncology, 63, 1-9.
https://doi.org/10.1016/j.oraloncology.2016.10.002
[128] Bean, M.B., Liu, Y., Jiang, R., Steuer, C.E., Patel, M., McDonald, M.W., et al. (2019) Small Cell and Squamous Cell Carcinomas of the Head and Neck: Comparing Incidence and Survival Trends Based on Surveillance, Epidemiology, and End Results (SEER) Data. The Oncologist, 24, 1562-1569.
https://doi.org/10.1634/theoncologist.2018-0054
[129] Pointer, K.B., Ko, H.C., Brower, J.V., Witek, M.E., Kimple, R.J., Lloyd, R.V., et al. (2017) Small Cell Carcinoma of the Head and Neck: An Analysis of the National Cancer Database. Oral Oncology, 69, 92-98.
https://doi.org/10.1016/j.oraloncology.2017.04.009
[130] Jansen, T.T.G., Timmers, H.J.L.M., Marres, H.A.M., Kaanders, J.H.A.M. and Kunst, H.P.M. (2018) Results of a Systematic Literature Review of Treatment Modalities for Jugulotympanic Paraganglioma, Stratified per Fisch Class. Clinical Otolaryngology, 43, 652-661.
https://doi.org/10.1111/coa.13046
[131] Gigliotti, M.J., Shaakir, H., Yun, L.,et al. (2018) A 10-Year Experience of Linear Accelerator-Based Stereotactic Radio-Surgery/Radiotherapy (SRS/SRT) for Paraganglioma: A Single Institution Experience and Review of the Literature. Journal of Radiosurgery & SBRT, 5, 183-190.
[132] Yazici, G., Kahvecioglu, A., Yuce Sari, S., Ozyigit, G., Yildiz, D. and Cengiz, M. (2024) Stereotactic Radiotherapy for Head and Neck Paragangliomas: How Long Should We Wait for Treatment Response? Radiotherapy and Oncology, 195, Article ID: 110232.
https://doi.org/10.1016/j.radonc.2024.110232
[133] Molitch, M.E. (2017) Diagnosis and Treatment of Pituitary Adenomas. JAMA, 317, 516-524.
https://doi.org/10.1001/jama.2016.19699
[134] Dumot, C., Mantziaris, G., Dayawansa, S., Peker, S., Samanci, Y., Nabeel, A.M., et al. (2023) Stereotactic Radiosurgery for Nonfunctioning Pituitary Tumor: A Multicenter Study of New Pituitary Hormone Deficiency. Neuro-Oncology, 26, 715-723.
https://doi.org/10.1093/neuonc/noad215
[135] Kanner, A.A., Corn, B.W. and Greenman, Y. (2008) Radiotherapy of Nonfunctioning and Gonadotroph Adenomas. Pituitary, 12, 15-22.
https://doi.org/10.1007/s11102-008-0089-3
[136] Loeffler, J.S. and Shih, H.A. (2011) Radiation Therapy in the Management of Pituitary Adenomas. The Journal of Clinical Endocrinology & Metabolism, 96, 1992-2003.
https://doi.org/10.1210/jc.2011-0251
[137] Tritos, N.A. and Miller, K.K. (2023) Diagnosis and Management of Pituitary Adenomas. JAMA, 329, 1386-1398.
https://doi.org/10.1001/jama.2023.5444
[138] Grønberg, B.H., Killingberg, K.T., Fløtten, Ø., Brustugun, O.T., Hornslien, K., Madebo, T., et al. (2021) High-Dose versus Standard-Dose Twice-Daily Thoracic Radiotherapy for Patients with Limited Stage Small-Cell Lung Cancer: An Open-Label, Randomised, Phase 2 Trial. The Lancet Oncology, 22, 321-331.
https://doi.org/10.1016/s1470-2045(20)30742-7
[139] Higgins, K.A., Simone, C.B., Amini, A., Chetty, I.J., Donington, J., Edelman, M.J., et al. (2021) American Radium Society Appropriate Use Criteria on Radiation Therapy for Extensive-Stage SCLC. Journal of Thoracic Oncology, 16, 54-65.
https://doi.org/10.1016/j.jtho.2020.09.013
[140] May, M.S., Kinslow, C.J., Adams, C., Saqi, A., Shu, C.A., Chaudhary, K.R., et al. (2021) Outcomes for Localized Treatment of Large Cell Neuroendocrine Carcinoma of the Lung in the United States. Translational Lung Cancer Research, 10, 71-79.
https://doi.org/10.21037/tlcr-20-374
[141] Wegner, R.E., Abel, S., Hasan, S., Horne, Z.D., Colonias, A., Weksler, B., et al. (2019) The Role of Adjuvant Therapy for Atypical Bronchopulmonary Carcinoids. Lung Cancer, 131, 90-94.
https://doi.org/10.1016/j.lungcan.2019.03.022
[142] Zhao, Y., Gu, H., Fan, L., Han, K., Yang, J. and Zhao, H. (2017) Comparison of Clinical Features and Survival between Thymic Carcinoma and Thymic Carcinoid Patients. European Journal of Cardio-Thoracic Surgery, 52, 33-38.
https://doi.org/10.1093/ejcts/ezx037
[143] Uprety, D., Halfdanarson, T.R., Molina, J.R. and Leventakos, K. (2020) Pulmonary Neuroendocrine Tumors: Adjuvant and Systemic Treatments. Current Treatment Options in Oncology, 21, Article No. 86.
https://doi.org/10.1007/s11864-020-00786-0
[144] Niu, Q., Lu, Y., Xu, S., Shi, Q., Guo, B., Guo, Z., et al. (2018) Clinicopathological Characteristics and Survival Outcomes of Bladder Neuroendocrine Carcinomas: A Population-Based Study. Cancer Management and Research, 10, 4479-4489.
https://doi.org/10.2147/cmar.s175286
[145] Cattrini, C., Cerbone, L., Rubagotti, A., Zinoli, L., Latocca, M.M., Messina, C., et al. (2019) Prognostic Variables in Patients with Non-Metastatic Small-Cell Neuroendocrine Carcinoma of the Bladder: A Population-Based Study. Clinical Genitourinary Cancer, 17, e724-e732.
https://doi.org/10.1016/j.clgc.2019.03.010
[146] Lim, J.H. and Sundar, S. (2019) Prognosis of Early Stage Small Cell Bladder Cancer Is Not Always Dismal. ESMO Open, 4, e000559.
https://doi.org/10.1136/esmoopen-2019-000559
[147] Tempfer, C.B., Tischoff, I., Dogan, A., Hilal, Z., Schultheis, B., Kern, P., et al. (2018) Neuroendocrine Carcinoma of the Cervix: A Systematic Review of the Literature. BMC Cancer, 18, Article No. 530.
https://doi.org/10.1186/s12885-018-4447-x
[148] Lin, L., Lin, Q., Liu, J., Chu, K., Huang, Y., Zhang, Z., et al. (2020) Prognostic Factors and Treatment Comparison in Small Cell Neuroendocrine Carcinoma of the Uterine Cervix Based on Population Analyses. Cancer Medicine, 9, 6524-6532.
https://doi.org/10.1002/cam4.3326
[149] Dong, M., Gu, X., Ma, T., Mi, Y., Shi, Y. and Fan, R. (2021) The Role of Radiotherapy in Neuroendocrine Cervical Cancer: Seer-Based Study. Science Progress, 104, 1-12.
https://doi.org/10.1177/00368504211009336
[150] Pang, L., Yang, H., Ning, Y. and Zheng, C. (2021) Retrospective Analysis of Clinicopathological Features and Prognosis of Gynecological Small-Cell Carcinoma. Cancer Management and Research, 13, 4529-4540.
https://doi.org/10.2147/cmar.s314686
[151] Bhatia, S., Storer, B.E., Iyer, J.G., Moshiri, A., Parvathaneni, U., Byrd, D., et al. (2016) Adjuvant Radiation Therapy and Chemotherapy in Merkel Cell Carcinoma: Survival Analyses of 6908 Cases from the National Cancer Data Base. Journal of the National Cancer Institute, 108, djw042.
https://doi.org/10.1093/jnci/djw042
[152] Andruska, N., Fischer-Valuck, B.W., Mahapatra, L., Brenneman, R.J., Gay, H.A., Thorstad, W.L., et al. (2021) Association between Surgical Margins Larger than 1 Cm and Overall Survival in Patients with Merkel Cell Carcinoma. JAMA Dermatology, 157, 540-548.
https://doi.org/10.1001/jamadermatol.2021.0247
[153] Andruska, N., Mahapatra, L., Brenneman, R.J., Huang, Y., Paniello, R.C., Puram, S.V., et al. (2021) Regional Lymph Node Irradiation in Locally Advanced Merkel Cell Carcinoma Reduces Regional and Distant Relapse and Improves Disease-Specific Survival. Radiotherapy and Oncology, 155, 246-253.
https://doi.org/10.1016/j.radonc.2020.11.003
[154] Faller, H., Schuler, M., Richard, M., Heckl, U., Weis, J. and Küffner, R. (2013) Effects of Psycho-Oncologic Interventions on Emotional Distress and Quality of Life in Adult Patients with Cancer: Systematic Review and Meta-analysis. Journal of Clinical Oncology, 31, 782-793.
https://doi.org/10.1200/jco.2011.40.8922
[155] Lutgendorf, S.K., Sood, A.K. and Antoni, M.H. (2010) Host Factors and Cancer Progression: Biobehavioral Signaling Pathways and Interventions. Journal of Clinical Oncology, 28, 4094-4099.
https://doi.org/10.1200/jco.2009.26.9357
[156] Riba, M.B., Donovan, K.A., Kauser, A., et al. (2023) NCCN Guidelines® Insights: Distress Management, Version 2.2023. Journal of the National Comprehensive Cancer Network, 21, 450-457.
[157] Grassi, L., Caruso, R., Riba, M.B., Lloyd-Williams, M., Kissane, D., Rodin, G., et al. (2023) Anxiety and Depression in Adult Cancer Patients: ESMO Clinical Practice Guideline. ESMO Open, 8, Article ID: 101155.
https://doi.org/10.1016/j.esmoop.2023.101155
[158] Brown, G.T.F., Bekker, H.L. and Young, A.L. (2022) Quality and Efficacy of Multidisciplinary Team (MDT) Quality Assessment Tools and Discussion Checklists: A Systematic Review. BMC Cancer, 22, Article No. 286.
https://doi.org/10.1186/s12885-022-09369-8