基本情况
肖波齐,武汉工程大学机电工程学院三级教授,博士生导师,博士,湖北省“楚天学者”,湖北省“杰出青年科学基金”获得者,武汉工程大学“工大学者计划”特聘教授
主要经历
2004.09-2006.12
华中科技大学 硕士生学习,获硕士学位
2011.08-2014.07
香港理工大学 博士生学习,获博士学位
主持国家自然科学基金面上项目、国家自然科学基金青年项目、湖北省“杰出青年科学基金”项目、省自然科学基金面上项目等11项课题
研究方向
分形多孔介质传热传质,油气藏渗流力学及分形理论和方法应用
论文发表
-
Huan Zhou, Jun
Gao, Boqi Xiao*(肖波齐), Lei Chen, Jiyin Cao, Gongbo Long, Jiacheng Zhang, Fractal
permeability model for power-law fluids in embedded tree-like branching
networks based on the fractional-derivative theory, Physics of Fluids, 2024,
36(9): 093610.
-
Liu,
Mingxing,Gao, Jun,Xiao, Boqi, et al.FRACTAL MODEL FOR EFFECTIVE THERMAL
CONDUCTIVITY OF COMPOSITE MATERIALS EMBEDDED WITH A DAMAGED TREE-LIKE
BIFURCATION NETWORK[J].FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE
AND SOCIETY,2024,32(01).DOI:10.1142/S0218348X24500087.
-
Wang,
Peilong,Gao, Jun,Xiao, Boqi, et al.The Fastest Capillary Flow in Root-like
Networks under
Gravity[J].LANGMUIR,2024,40(18):9741-9750.DOI:10.1021/acs.langmuir.4c00740.
-
Zhang,
Guoying,Gao, Jun,Xiao, Boqi, et al.Fractal study on the permeability of
power-law fluid in a rough and damaged tree-like branching network[J].PHYSICS
OF FLUIDS,2024,36(08).DOI:10.1063/5.0227111.
-
Tu,
Biliang,Xiao, Boqi,Zhang, Yidan, et al.An analytical model for permeability of
fractal tree-like branched networks composed of converging-diverging
capillaries[J].PHYSICS OF FLUIDS,2024,36(04).DOI:10.1063/5.0201040.
-
Zhang,
Yidan,Xiao, Boqi,Wang, Yanbin, et al.FRACTAL ANALYSIS FOR PERMEABILITY OF
MULTIPLE SHALE GAS TRANSPORT MECHANISMS IN ROUGHENED TREE-LIKE
NETWORKS[J].FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND
SOCIETY,2024,32(03).DOI:10.1142/S0218348X24500580.
-
Liu,
Yonghui,Gao, Jun,Xiao, Boqi, et al.THERMAL CONDUCTIVITY OF UNSATURATED FIBROUS
MEDIA BY FRACTAL-MONTE CARLO SIMULATIONS[J].FRACTALS-COMPLEX GEOMETRY PATTERNS
AND SCALING IN NATURE AND SOCIETY,2024,32(01).DOI:10.1142/S0218348X22401168.
-
Zhang,
Yidan,Gao, Jun,Xiao, Boqi, et al.A FRACTAL-MONTE CARLO APPROACH TO SIMULATE
KOZENY-CARMAN CONSTANT OF ROUGHENED FIBROUS POROUS MEDIA[J].FRACTALS-COMPLEX
GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY,2024,32(01).DOI:10.1142/S0218348X22401132.
-
Li,
Shaofu,Gao, Jun,Xiao, Boqi, et al.Fractal analysis of dimensionless
permeability and Kozeny-Carman constant of spherical granular porous media with
randomly distributed tree-like branching networks[J].PHYSICS OF FLUIDS,2024,36(06).DOI:10.1063/5.0218990.
-
Liu,
Wenyan,Duan, Yuzeng,Xiao, Boqi, et al.FRACTAL STUDY ON THE PERMEABILITY IN
CHARGED MICRO-FRACTURED POROUS MEDIA[J].FRACTALS-COMPLEX GEOMETRY PATTERNS AND
SCALING IN NATURE AND SOCIETY,2024,32(01).DOI:10.1142/S0218348X24500208.
-
Wang,
Peilong,Xiao, Boqi,Zhang, Yidan, et al.A FRACTAL MODEL FOR ELECTRICAL
CONDUCTIVITY OF POROUS MEDIA EMBEDDED WITH A DAMAGED TREE-LIKE
NETWORK[J].FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND
SOCIETY,2023,31(09).DOI:10.1142/S0218348X23501037.
-
Xiao,
Boqi,Akguel, Ali,Shou, Dahua, et al.SPECIAL ISSUE ON "ANALYSIS AND
MODELING OF HEAT AND MASS TRANSFER IN FRACTAL POROUS MEDIA"
PREFACE[J].FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND
SOCIETY,2023,31(08).DOI:10.1142/S0218348X23020048.
-
Zhu,
Huaizhi,Gao, Jun,Xiao, Boqi, et al.PREDICTING THE ELECTRICAL CONDUCTIVITY OF
DUAL-POROSITY MEDIA WITH FRACTAL THEORY[J].FRACTALS-COMPLEX GEOMETRY PATTERNS
AND SCALING IN NATURE AND SOCIETY,2023,31(09).DOI:10.1142/S0218348X23501311.
-
Zhang, Yidan,Xiao,
Boqi,Tu, Biliang, et al.FRACTAL ANALYSIS FOR THERMAL CONDUCTIVITY OF DUAL
POROUS MEDIA EMBEDDED WITH ASYMMETRIC TREE-LIKE BIFURCATION
NETWORKS[J].FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND
SOCIETY,2023,31(05).DOI:10.1142/S0218348X23500469.
-
Xiao,
Boqi,Chen, Fengye,Zhang, Yidan, et al.A NOVEL KOZENY-CARMAN CONSTANT MODEL FOR
POROUS MEDIA EMBEDDED WITH TREE-LIKE BRANCHING NETWORKS WITH ROUGHENED
SURFACES[J].FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND
SOCIETY,2023,31(08).DOI:10.1142/S0218348X23401862.
-
Wang,
Peilong,Xiao, Boqi,Gao, Jun, et al.A NOVEL FRACTAL MODEL FOR SPONTANEOUS
IMBIBITION IN DAMAGED TREE-LIKE BRANCHING NETWORKS[J].FRACTALS-COMPLEX GEOMETRY
PATTERNS AND SCALING IN NATURE AND SOCIETY,2023,31(01).DOI:10.1142/S0218348X2350010X.
-
Zhu,
Huaizhi,Xiao, Boqi,Zhang, Yidan, et al.A FRACTAL ELECTRICAL CONDUCTIVITY MODEL
FOR WATER-SATURATED TREE-LIKE BRANCHING NETWORK[J].FRACTALS-COMPLEX GEOMETRY
PATTERNS AND SCALING IN NATURE AND SOCIETY,2023,31(07).DOI:10.1142/S0218348X23500755.
-
Gao, Jun,Xiao,
Boqi,Tu, Biliang, et al.A FRACTAL MODEL FOR GAS DIFFUSION IN DRY AND WET
FIBROUS MEDIA WITH TORTUOUS CONVERGING-DIVERGING CAPILLARY
BUNDLE[J].FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND
SOCIETY,2022,30(09).DOI:10.1142/S0218348X22501766.
-
Xiao, Boqi,LI,
Yupeng,Long, Gongbo, et al.FRACTAL PERMEABILITY MODEL FOR POWER-LAW FLUIDS IN
FRACTURED POROUS MEDIA WITH ROUGH SURFACES[J].FRACTALS-COMPLEX GEOMETRY
PATTERNS AND SCALING IN NATURE AND SOCIETY,2022,30(06).DOI:10.1142/S0218348X22501158.
-
Liu,
Zhenjie,Gao, Jun,Xiao, Boqi, et al.A NOVEL PERMEABILITY MODEL IN DAMAGED
TREE-LIKE BIFURCATING NETWORKS CONSIDERING THE INFLUENCE OF
ROUGHNESS[J].FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND
SOCIETY,2022,30(01).DOI:10.1142/S0218348X22500281.
-
Xiao,
Boqi,Fang, Jing,Long, Gongbo, et al.ANALYSIS OF THERMAL CONDUCTIVITY OF DAMAGED
TREE-LIKE BIFURCATION NETWORK WITH FRACTAL ROUGHENED
SURFACES[J].FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND
SOCIETY,2022,30(06).DOI:10.1142/S0218348X22501043.
-
Xiao, Boqi,Li,
Yupeng,Long, Gongbo.A FRACTAL MODEL OF POWER-LAW FLUID THROUGH CHARGED FIBROUS
POROUS MEDIA BY USING THE FRACTIONAL-DERIVATIVE THEORY[J].FRACTALS-COMPLEX
GEOMETRY PATTERNS AND SCALING IN NATURE AND SOCIETY,2022,30(03).DOI:10.1142/S0218348X22500724.
-
Xiao,
Boqi,Wang, Peilong,Wu, Jinsui, et al.A NOVEL FRACTAL MODEL FOR GAS DIFFUSION
COEFFICIENT IN DRY POROUS MEDIA EMBEDDED WITH A DAMAGED TREE-LIKE BRANCHING
NETWORK[J].FRACTALS-COMPLEX GEOMETRY PATTERNS AND SCALING IN NATURE AND
SOCIETY,2022,30(07).DOI:10.1142/S0218348X2250150X.
-
Long,
Gongbo,Liu, Yingjie,Xu, Wanrong, et al.Analysis of Crack Problems in
Multilayered Elastic Medium by a Consecutive Stiffness
Method[J].MATHEMATICS,2022,10(23).DOI:10.3390/math10234403.