基本情况

周定轩,香港城市大学数学系教授及主任。

 

研究领域

学习理论、小波分析、逼近论

 

教育背景

19919月,博士,浙江大学

1988年,学士,浙江大学

 

工作经历

20068月至今系主任,香港城市大学数学系

20059月到20098教授香港城市大学

20011月到20058副教授,香港城市大学

199912月到200012助理教授,香港城市大学

19957月到199611博士后,加拿大Alberta大学

19922月到19932博士后,中科院数学所

研究项目:

1.Discovery Project (DP240101919) from Australian Research Council (AUD402,491, awarded in November 2023) as Chief and sole Investigator. Title: Approximation theory of structured neural networks

2.Discovery Project (DP250101359) from Australian Research Council (AUD547,873, awarded in November 2024) as Chief Investigator (Yiming Ying and Ding-Xuan Zhou).Title: Advancing Fair Machine Learning with Theory and Algorithms


论文发表

发表了近100SCI论文。在SCI数据库中列为top 1% most cited scientist in mathematics。主持了25项香港政府和城市大学研究基金。多次在国际学术会议上作特邀报告。已指导11位博士毕业,6位博士生在读。

  1.   Z. Han, S. Q. Yu, S. B. Lin, and D. X. Zhou, Depth selection for deep ReLU nets in feature extraction and generalization, IEEE Trans. Pattern Anal. Machine Intelligence {\bf 44}: 4 (2022), 1853--1868.

    2.    C. K. Chui, S. B. Lin, B. Zhang, and D. X. Zhou, Realization of spatial sparseness by deep ReLU nets with massive data, IEEE Transactions on Neural Networks and Learning Systems {\bf 33}:1 (2022), 229--243.

    3.         J. S. Zeng, W. Yin, and D. X. Zhou, Moreau envelope augmented Lagrangian method for

    4.         nonconvex optimization with linear constraints, Journal of Scientific Computing (2022) {\bf 91}:61.

    5.         DOI: 10.1007/s10915-022-01815-w

    6.         X. Guo, J. H. Lin, and D. X. Zhou, Convergence of the randomized Kaczmarz algorithm in Hilbert spaces, Appl. Comput. Harmonic Anal. {\bf 61} (2022), 288--318.

    7.         S. B. Lin, K. D. Wang, Y. Wang, and D. X. Zhou, Universal consistency of deep convolutional neural networks, IEEE Trans. Inform. Theory {\bf 68}:7 (2022), 4610--4617.

    8.         H. Feng, S. Z. Hou, L. Y. Wei, and D. X. Zhou, CNN models for readability of Chinese texts, Mathematical Foundations of Computing {\bf 5} (2022), 351--362.

    9.         P. Y. Wang, Y. W. Lei, Y. Ying, and D. X. Zhou, Stability and generalization for Markov Chain stochastic gradient methods, NeurIPS 2022.

    10.     J. S. Zeng, Y. D. Xie, X. L. Yu, J. Lee, and D. X. Zhou, Enhancing automatic readability assessment with pre-training and soft labels for ordinal regression, Findings of the Association for Computational Linguistics: EMNLP 2022, pp. 4557–4568. (2022 Conference on Empirical Methods in Natural Language Processing).

    11.     T. Mao and D. X. Zhou, Approximation of functions from Korobov spaces by deep convolutional neural networks, Advances in Computational Mathematics (2022) 48:84 https://doi.org/10.1007/s10444-022-09991-x

    12.     T. Mao and D. X. Zhou, Rates of Approximation by ReLU Shallow Neural Networks, Journal of Complexity {\bf 79} (2023), 101784.

    13.     L. H. Song, Y. Liu, J. Fan, and D. X. Zhou, Approximation of continuous and smooth functionals using deep ReLU networks, Neural Networks {\bf 166} (2023), 424--436.

    14.     S. Huang, J. Y. Zhou, H. Feng, and D. X. Zhou, Generalization analysis of pairwise learning for ranking with deep neural networks, Neural Computation {\bf 35}:6 (2023), 1135--1158.

    15.     T. Mao, Z. J. Shi, and D. X. Zhou, Approximating functions with multi-features by deep convolutional neural networks, Anal. Appl. {\bf 21} (2023), 93--125.

    16.     Y. W. Lei, T. B. Yang, Y. Ying, and D. X. Zhou, Generalization analysis for contrastive representation learning, ICML, 2023.

    17.     L. H. Song, J. Fan, D. R. Chen, and D. X. Zhou, Approximation of nonlinear functionals using deep ReLU networks, J. Fourier Anal. Appl. (2023) 29:50 https://doi.org/10.1007/s00041-023-10027-1

    18.     Z. Yu and D. X. Zhou, Deep learning theory of distribution regression with CNNs, Adv. Comput. Math. (2023) 49:51 https://doi.org/10.1007/s10444-023-10054-y

    19.     L. Y. Wei, Z. Yu, and D. X. Zhou, Federated learning for minimizing nonsmooth convex loss functions, Mathematical Foundations of Computing {\bf 6}:4 (2023), 753--770.

    20.     H. Feng, S. Huang, and D. X. Zhou, Generalization analysis of CNNs for classification on spheres, IEEE Transactions on Neural Networks and Learning Systems {\bf 34}:9 (2023), 6200--6213.

    21.     S. B. Lin, D. Wang, and D. X. Zhou, Sketching with spherical designs for noisy data fitting on spheres, SIAM Journal on Scientific Computing {\bf 46}:1 (2024), 313--337.

    22.     Q. Fang, L. Shi, M. Xu, and D. X. Zhou, Efficient kernel canonical correlation analysis using Nystr\"{o}m approximation, Inverse Problems {\bf 40} (2024), 045007 (26pp)

    23.     J. F. Li, H. Feng, and D. X. Zhou, DLU neural networks and their

    24.     approximation power, Journal of Computational and Applied Mathematics {\bf 440} (2024) 115551.

    25.     P. Y. Wang, Y. W. Lei, Y. Ying, and D. X. Zhou, Differentially private stochastic gradient descent with low-noise, Neurocomputing {\bf 585} (2024), 127557.

    26.     Y. Q. Liu, T. Mao, and D. X. Zhou, Approximation of functions from Korobov spaces by shallow neural networks, Information Sciences {\bf 670} (2024), 120573.

    27.     J. F. Li, H. Feng, and D. X. Zhou, Approximation analysis of CNNs from a feature extraction view, Analysis and Applications {\bf 22} (2024), 635--654.

    28.     Z. H. Zhang, L. Shi, and D. X. Zhou, Classification with deep neural networks and logistic loss, Journal of Machine Learning Research {\bf 25}(125):1−117, 2024.

    29.     Y. F. Yang and D. X. Zhou, Nonparametric regression using over-parameterized shallow ReLU neural networks, Journal of Machine Learning Research {\bf 25}(165):1−35, 2024.

    30.     Z. Yu, J. Fan, Z. J. Shi, and D. X. Zhou, Distributed gradient descent for functional learning, IEEE Transactions on Information Theory {\bf 70}:9(2024), 6547--6571.

    31.     X. Han, D. X. Zhou, G. J. Shen, X. J. Kong, and Y. L. Zhao, Deep trajectory recovery approach of offline vehicles in the internet of vehicles, IEEE Transactions on Vehicular Technology {\bf 73}:11 (2024), 16051--16062.

    32.     Han Feng, Shao-Bo Lin, and Ding-Xuan Zhou, Radial basis function approximation with distributively stored data on spheres, Constr. Approx. {\bf 60} (2024), 1--31.

    33.     G. H. Lei, Z. Lei, L. Shi, C. Y. Zeng, and D. X. Zhou, Solving PDEs on spheres with physics-informed convolutional neural networks, Appl. Comput. Harmonic Anal. {\bf 74} (2025), 101714.

    34.     L. M. Liu and D. X. Zhou, Analysis of regularized federated learning, Neurocomputing {\bf 611} (2025), 128579.

    35.     P. L. Liu, Y. Q. Liu, X. Zhou, and D. X. Zhou, Approximation of functionals on Korobov spaces with Fourier functional networks, Neural Networks {\bf 182} (2025), 106922.

    36.     P. L. Liu and D. X. Zhou, Generalization analysis of transformers in distribution regression, Neural Computation {\bf 37} (2025), 260--293.

    37.     P. Y. Wang, Y. W. Lei, D. Wang, Y. Ying, D. X. Zhou, Generalization guarantees of gradient descent for shallow neural networks, Neural Computation {\bf 37} (2025), 344--402.