NAT  >> Vol. 1 No. 1 (May 2011)

    Hydrothermal Synthesis of 8YSZ Nanopowders and Their Sinterabilities

  • 全文下载: PDF(1165KB) HTML    PP.6-11   DOI: 10.12677/nat.2011.11002  
  • 下载量: 2,946  浏览量: 12,277   科研立项经费支持



YSZ; Nanopowders; Hydrothermal Method; Sinterability


本文采用化学共沉淀结合水热晶化的方法,在200℃的温度下合成出了具有立方相的8YSZ([ZrO2]0.92[Y2O3]0.08) 纳米粉体,粉体的晶粒尺寸在7 ~ 8 nm左右,粉体为软团聚,团聚体强度只有20MPa,粉体具有很高的烧结活性,1000℃下就开始了快速收缩,1065℃下收缩速率达到最快,1200℃下收缩基本结束,块体材料1000℃下保温8 h或1100℃下保温4 h以后就基本上实现了致密化,相比之下采用化学共沉淀结合水洗-醇洗-煅烧法需要在1300℃烧结10 h才能基本上实现致密化。水热晶化法制备的8YSZ纳米粉体的高烧结活性来自于粉体细小的晶粒尺寸和松散的软团聚。

The cubic phase 8YSZ ([ZrO2]0.92[Y2O3]0.08) nanopowders were synthesized by a chemical co-precipitation method combined with hydrothermal crystallization treatment. The average size of 8YSZ crystallines was in the range of 7 - 8 nm and they were softly congregated with the aggregation strength of only 20 MPa. The as-synthesized 8YSZ nanopowders exhibited high sinterabilities, and they started to rapidly thermo shrink at 1000℃ and reached the maximum shrinkage rate at 1065℃. At 1200℃, the shrinkage process was basically finished. When sintered at 1000℃ for 8 hrs or 1100℃ for 4 hrs, the block of 8YSZ nanopowders can be basically densified, whereas the block of 8YSZ nanopowders synthesized by water- and ethanol-washed can only be basically sintered to dense at 1300℃ for 10 hrs. The high sinterabilities of hydrothermal 8YSZ nanopowders are attributed to their fine crystalline size and incompact aggregation.

范宝安, 颜家保, 邱江华, 颜晓潮. 水热法制备8YSZ纳米粉体及其烧结活性的研究[J]. 纳米技术, 2011, 1(1): 6-11.


[1] M. Gaudon, C. Laberty-Robert, F. Ansart, et al., New chemical process for the preparation of fine powders and thin films of LSMx-YSZ composite oxides. Solid State Sciences, 2003, 5(10): 1377-1383.
[2] 范宝安, 朱庆山, 谢朝晖.固体氧化物燃料电池YSZ电解质的制备方法概述[J].过程工程学报, 2004, 4(1): 75-83.
[3] S. P. S. Badwal. Zirconia-based solid electrolytes: microstructure, stability and ionic conductivity. Solid State Ionics, 1992, 52(1-3): 23-32.
[4] M. F. Han, X. L. Tang, S. P. Peng. Research on sintering process of YSZ electrolyte. Rare Metals, 2006, 25(6): 209-212.
[5] R. S. Lima, B. R. Marple. Nanostructured YSZ thermal barrier coatings engineered to counteract sintering effects. Materials Science and Engineering: A, 2008, 485(1-2): 182-193.
[6] 章天金, 吴新明.溶胶-凝胶工艺合成ZrO2超微粉末的研究[J].无机材料学报, 1996, 11(3): 435-440.
[7] A. I. Y. Tok, F. Y. C. Boey, S. W. Du, et al. Flame spray synthesis of ZrO2 nano-particles using liquid precursors. Materials Science and Engineering B, 2006, 130(1-3): 114-119.
[8] M. Gaudon, E. Djurado, N. H. Menzler. Morphology and sintering behaviour of yttria stabilised zirconia (8-YSZ) powders synthesised by spray pyrolysis. Ceramics International 2004, 30(8): 2295-2303.
[9] C. Laberty-Robert, F. Ansart, C. Deloget, et al. Powder synthesis of nanocrystalline ZrO2-8%Y2O3 via a polymerization route. Materials Research Bulletin, 2001, 36(12): 2083-2101.
[10] R. E. Juárez, D. G. Lamas, G. E. Lascalea, et al. Synthesis of nanocrystalline zirconia powders for TZP ceramics by a nitrate-citrate combustion route. Journal of the European Ceramic Society, 2000, 20(2): 133-138.
[11] 李蔚, 高濂, 郭景坤.醇-水溶液加热法制备纳米ZrO2粉体及相关过程的研究[J].无机材料学报, 2000, 15(1):16-20.
[12] 李蔚, 高濂, 郭景坤.醇-水溶液加热法制备纳米氧化锆粉体[J].无机材料学报, 1999, 14(1): 161-164.
[13] 施剑林, 高建华, 林祖禳. 共沉淀-喷雾干燥法制备YSZ粉料及其对烧结密度的影响[J]. 硅酸盐学报, 1989, 17(5):417-422.
[14] T. Hu, Z. C. Michael. Nanocrystallization and phase transformation in monodispersed ultrafine zirconia particles from various homogeneous precipita-tion methods. Journal of the American Ceramic Society, 1999, 82(9): 2313-2320.
[15] H. Shari, Z. Zhang. Preparation of Nanometre-Sized ZrO2/Al2O3 Powders by Heterogeneous Azeotropic Distillation. Journal of the European Ceramic Society, 1997, 17(5): 713-717.
[16] S. K. Tadokoro, E. N. S. Muccillo. Physical characteristics and sintering behavior of ultrafine zirconia-ceria powders. Journal of the European Ceramic Society, 2002, 22(9-10): 1723-1728.
[17] R. E. uárez, D. G. Lamas, G. E. Lascalea, et al. Synthesis of nanocrystalline zirconia powders for TZP ceramics by a nitrate-citrate combustion route. Journal of the European Ceramic Society, 2000, 20(2):133-138.
[18] I. R. Gibson, G. P. Dransfield, J. T. S. Irvine. Sinterability of commercial 8 mol% yttria-stabilized zirconia powders and the effect of sintered density on the ionic conductivity. Journal of Materials Science, 1998, 33(17): 4297-4305.