聚丙烯/尼龙6复合超微粉改性天然橡胶热氧老化降解动力学
Study on Thermal Oxidative Degradation Kinetics of the Blend of PA6-PP Ultra Fine Co-Powder and Natural Rubber
DOI: 10.12677/nat.2011.11003, PDF, HTML,  被引量 下载: 4,084  浏览: 13,063  国家自然科学基金支持
作者: 李志敏, 李淳, 孙蓉:暨南大学化学系;曾秋苑, 敖宁建*:暨南大学生物医学工程研究所
关键词: PA6PP超微粉NR降解动力学
PA6
PP Ultra Fine Powder Nr Thermo-Oxidative Degradation Kinetics
摘要: 采用磨盘型力化学反应器制备了平均粒径为1.04 µm的PA6/PP塑料复合超微粉,将其与NR共混,制备PA6/PP/NR共混物,用TG/DTG研究共混物热氧降解动力学。结果表明,共混物的降解曲线出现失重台阶,降解反应级数n为1.8。随升温速率β增大,相应的降解温度和降解速率升高,但最大降解率CP和最终降解率Cf基本不受β的影响。与纯NR相比,共混物初始降解温度T0、表观活化能E0有所降低,但最大降解温度Tp与最终降解温度Tf 均明显提高。PA6/PP超微粉对橡胶硫化网络的形成和热氧降解自由基反应产生影响,综合结果使共混物耐热性能提高。
Abstract: PA6-PP ultra fine co-powder was prepared by pan-milling method and the co-powder was blended with natural rubber latex through ultra sonic treating. The thermal oxidative degradation kinetics of the blend was studied in air atmosphere by thermo-gravimetric analysis(TG/TGA). The results show that,the thermal degradation reaction of the blend in air atmosphere is a two-stage reaction. The reaction order (n) of the thermo-oxidation reaction is 1.8. With the increment of the heating rate (β), the degradation temperature and degradation rate as well as the activation energy of reaction (E) increase linearly, but the maximum weight loss rate (CP)and the final weight loss rate (Cf) are not affected by β. Compared to pure NR, the initial degra-dation temperature (T0) and the apparent activation energy (E0) is lower but the maximum weight loss tem-perature (Tp) and final weight loss temperature (Tf) is higher. The vulcanization net and the thermo-oxidative radical reaction of the rubber are affected by the PA6-PP ultra fine co-powder added and the anti ther-mo-oxidative degradation property of the blend is improved.
文章引用:李志敏, 李淳, 曾秋苑, 孙蓉, 敖宁建. 聚丙烯/尼龙6复合超微粉改性天然橡胶热氧老化降解动力学[J]. 纳米技术, 2011, 1(1): 12-16. http://dx.doi.org/10.12677/nat.2011.11003

参考文献

[1] Z. H. Wang, Y. L. Lu, J. Liu, et al. Preparation of Nano-Zinc Oxide/EPDM Composites with Both Good Thermal Conductivity and Mechanical Properties. Journal of Applied Polymer Science, 2011, 119(2):1144-1155.
[2] P. Sunil, A. Lonkar, K. Pratheep, et al. Photo-stabilization of EPDM-clay nanocomposites: effect of antioxidant on the preparation and durability. Polymers for Advanced Technologies, 2007, 18(11): 891-900.
[3] A. R. Tripathy, C. K. Das. Interchain crosslinking between NBR and polyacrylic rubber and effect on (i) processibility and blend- morphology. Journal of Applied Polymer Science, 1994, 51(2): 245-251.
[4] Z. Traian, J. Silviu, K. Wilhelm, et al. The Control of Thermal and Radiation Stability of Polypropylene Containing Calcium Carbonate Nanoparticles. Macromolecular Symposia, 2006, 242(1): 319-324.
[5] 敖宁建, 王琪. 磨盘碾磨制备PA6/PP/SBS共混物的结构与性能[J].高等学校化学学报, 2002, 29(7):1425-1428.
[6] 张立群, 吴友平. 橡胶的纳米增强及纳米复合技术[J].合成橡胶工业, 2000, 23(2): 171-175.
[7] 敖宁建, 陈美, 周慧铃. PA6/PP微粉改性NR的超微结构与热氧稳定性研究[J].电子显微学报, 2003, 22(6): 579-580.
[8] 陈美, 敖宁建, 张北龙等. 过氧化物预硫化医用天然胶乳制品热空气老化过程的超微结构与热氧降解的研究[J].电子显微学报, 2006, 25(3): 234-237.
[9] M. Rathanawan, L. Wittaya, S. Anuvat, et al. Preparation, structure, properties and thermal behavior of rigid-rod polyimide/montmorillonite nanocomposites. Composites Science and Technology, 2001, 61(9): 1253-1264.
[10] 向建敏. NR/BR并用硫化胶热氧降解动力学研究[J]. 橡胶工业, 1995, 42(8): 451-453.
[11] S. Mohanty, P. G. Mukunda. Kinetics of thermal degradation and related changes in the structure of blends of poly (ethylene- co-acrylic acid) (PEA) and epoxidized natural rubber (ENR). Polymer Degradation and Stability, 1996, 52(3): 235-244.
[12] B. L. Zhang, M. Chen, N. J. Ao. Study on hot air aging and thermooxidative degradation of peroxide prevulcanized natural rubber latex film. Journal of Applied Polymer Science, 2004, 92(5): 3196-3200.
[13] Z. Peng, S. D. Li. Thermogravimetric analysis of methyl methacrylate-graft-natural rubber. Journal of Applied Polymer Science, 2002, 85(14): 2952-2955.
[14] A. P. Machew, S. Packirisamy. Studies on the thermal stability of natural rubber/polystyrene interpenetrating polymer networks: thermogravimetric analysis. Polymer Degradation and Stability, 2001, 72(3): 423-439.
[15] A. W. Coats, J. P. Redfern. Kinetic Parameters from Thermogravimetric Data. Nature, 1964, 201: 8-14.
[16] H. P. Yi, S. D. Li. Preparation and study of epoxidized natural rubber. Journal of Thermal Analysis and Calorimetry, 1999, 58(2): 293-299.
[17] A. R. R. Menon, C. K. S. Pillai. Thermal degradation characteristics of natural rubber vulcanizates modified with phosphorylated cashew nut shell liquid. Polymer Degradation and Stability, 1996, 52(3): 265-271.