取代基对苯基格氏试剂电解液电化学性能的影响
Effect of Substituent Groups in Phenyl Grignard Reagent Electrolytes on Electrochemical Performance
DOI: 10.12677/JAPC.2013.22002, PDF, HTML, 下载: 3,249  浏览: 11,178  国家科技经费支持
作者: 郭永胜, 张 帆:上海交通大学化学化工学院,上海;杨 军*:上海交通大学化学化工学院
关键词: 格氏试剂取代基镁可逆沉积–溶出阳极稳定性可充镁电池Grignard Reagent; Substituent; Magnesium Deposition-Dissolution; Anodic Stability; Rechargeable Magnesium Battery
摘要: 镁能够在格氏试剂RMgX(R为烷基和苯基等,X为卤素)的醚溶液中实现可逆沉积–溶出,然而,对于不同取代基对格氏试剂电解液的电化学性能影响却很少有人研究。在本文中,我们合成了一系列氟或甲基在不同位置取代的苯基格氏试剂电解液,并研究了他们的电化学性能。结果表明,苯环上不同位置被氟或甲基取代对苯基格氏试剂电解液的镁沉积–溶出可逆性和电化学稳定窗口有显著影响。这些发现为开发新的可充镁电池电解液体系打下了基础。 Mg can be reversibly deposited from ethereal solutions of Grignard salts of the RMgX type (R = alkyl, aryl groups and X = Cl, Br etc.). However, effect of different substituent groups on the electrochemical properties of Grig-nard electrolyte is rarely studied. In this paper, we synthesized a series of phenyl Grignard reagents with substituent groups in different positions and investigated their electrochemical performance. The results show that the Mg deposi-tion/dissolution reversibility and electrochemically stable window of the phenyl Grignard reagent electrolytes are greatly influenced by fluorine or methyl group in different positions on the phenyl ring. These findings pave the way to develop new electrolyte systems for rechargeable magnesium battery.
文章引用:郭永胜, 张帆, 杨军. 取代基对苯基格氏试剂电解液电化学性能的影响[J]. 物理化学进展, 2013, 2(2): 7-14. http://dx.doi.org/10.12677/JAPC.2013.22002

参考文献

[1] [1] 郭炳琨, 李新海, 杨松青. 化学电源[M]. 长沙: 中南工业大学出版社, 2000.
[2] J. M. Tarascon, M. Armand. Issues and challenges facing re- chargeable lithium batteries. Nature, 2001, 414(6861): 359-367.
[3] T. D. Gregory, R. J. Hoffman and R. C. Winterton. Nonaqueous electrochemistry of magnesium applications to energy storage. Journal of the Electrochemical Society, 1990, 137(3): 775-780.
[4] D. Aurbach, Z. Lu, A. Schechter, et al. Prototype systems for re- chargeable magnesium batteries. Nature, 2000, 407(6805): 724- 727.
[5] N. Amir, Y. Vestfrid, O. Chusid, et al. Progress in nonaqueous magnesium electrochemistry. Journal of Power Sources, 2007, 174(2): 1234-1240.
[6] L. P. Lossiusb, F. Emmenegger. Plating of magnesium from or- ganic solvents. Electrochimica Acta, 1996, 41(3): 445-447.
[7] Z. Lu, A. Schechter, M. Moshkovich, et al. On the electro- chemical behavior of magnesium electrodes in polar aprotic electrolyte solutions. Journal of Electroanalytical Chemistry, 1999, 466(2): 203-217.
[8] J. D. Genders, D. Pletcher. Studies using microelectrodes of the Mg(II)/Mg couple in tetrahydrofuran and propylene carbonate. Journal of Electroanalytical Chemistry, 1986, 199(1): 93-100.
[9] C. Liebenow. Reversibility of electrochemical magnesium depo- sition from Grignard solutions. Journal of Applied Electro- chemistry, 1997, 27(2): 221-225.
[10] D. Aurbach, Y. Cohen and M. Moshkovich. The study of rever- sible magnesium deposition by in situ scanning tunneling micro- scopy. Electrochemical and Solid-State Letters, 2001, 4(8): A113.
[11] D. Aurbach, A. Schechter, M. Moshkovich, et al. On the mechan- isms of reversible magnesium deposition processes. Journal of the Electrochemical Society, 2001, 148(9): A1004-A1014.
[12] D. Aurbach, T R. urgeman, O. Chusid, et al. Spectroelectro- chemical studies of magnesium deposition by in situ FTIR spec- troscopy. Electrochemistry Communications, 2001, 3(5): 252- 261.
[13] Y. S. Guo, J. Yang, Y. N. NuLi, et al. Study of electronic effect of Grignard reagents on their electrochemical behavior. Electro- chemistry Communications, 2010, 12(12): 1671-1673.
[14] D. Seyferth. The Grignard reagents. Organometallics, 2009, 28(6): 1598-1605.
[15] E. Lancry, E. Levi, A. Mitelman, et al. Molten salt synthesis (MSS) of Cu2Mo6S8—New way for large-scale production of Chevrel phases. Journal of Solid State Chemistry, 2006, 179(6): 1879-1882.
[16] E. Lancry, E. Levi, Y. Gofer, et al. Leaching chemistry and the performance of the Mo6S8 cathodes in rechargeable Mg bat- teries. Chemistry of Materials, 2004, 16(14): 2832-2838.
[17] G. Milazzo, S. Caroli, V. Sharma, et al. 标准电极电位数据手册[M]. 北京: 科学出版社, 1991.
[18] G. S. Silverman, P. E. Takita. Handbook of grignard reagents. New York: Marcel Dekker, 1996.
[19] W. V. Evans, R. Pearson. The ionic nature of the grignard rea- gent. Journal of the American Chemical Society, 1942, 64(12): 2865-2871.
[20] O. Chusid, Y. Gofer, H. Gizbar, et al. Solid-state rechargeable mag- nesium batteries. Advanced Materials, 2003, 15(7-8): 627-630.