# 一类新的双层纺织材料厚度设计反问题A New Inverse Problem of Thickness Design for Bi-Layer Textile Material

DOI: 10.12677/AAM.2013.22012, PDF, 下载: 2,659  浏览: 9,142

Abstract: This paper studies a new inverse problem of estimating bi-layer textile fabrics thickness based on a steady-state heat and moisture transfer model. We first present a heat and moisture transfer model for bi-layer textile materials with boundary conditions and solve them by finite difference method. According to the requirement of clothing’s thermal and moisture comfort, we formulate the inverse heat and moisture transfer problem that estimate the thickness of inner fabric as a minimum norm problem with a maximum probability constraint model. We use a static penalty method to convert the constrained problem into an equivalent unconstrained minimization problem and obtain the solution for the optimization problem by a stochastic search method, known as particle swarm optimization algorithm. Numerical experiments show that our new model is quiet acceptable, and the proposed numerical method’s validity and robustness.

 [1] A. P. Gagge, A. C. Burton and H. C. Bazett. A practical system of units for the description of the heat exchange of man with his environment. Science, 1941, 94(2445): 428-430. [2] A. H. Woodcock. Moisture transfer in textile systems, Part I. Textile Research Journal, 1962, 32(8): 628-633. [3] A. H. Woodcock. Moisture transfer in textile systems, Part II. Textile Research Journal, 1962, 32(9): 719-723. [4] B. Farnworth. A numerical model of the combined diffusion of heat and water vapor through clothing. Textile Research Journal, 1986, 56(11): 635-665. [5] W. A. Lotens, G. Havenith. Calculation of clothing insulation and vapor resistance. Ergonomics, 1991, 34(2): 233-254. [6] P. S. H. Henry. Diffusion in absorbing media. Proceedings of the Royal Society A, 1939, 171(2): 215-241. [7] J. T. Fan, X. Y. Cheng and Y. S. Chen. An experimental investigation of moisture absorption and condensation in fibrous insulations under low temperature. Experimental Thermal and Fluid Science, 2003, 27(6): 723-729. [8] D. H. Xu, J. X. Cheng and X. H. Zhou. An inverse problem of thickness design for single layer textile material under low temperature. Journal of Math-for-Industry, 2010, 2(B-4): 139-146. [9] D. H. Xu, J. X. Cheng and Y. B. Chen. An inverse problem of thickness design for bilayer textile materials under low temperature. Journal of Physics: Conference Series, 2011, 290(1): 139-146. [10] 黄建华. 服装的舒适性[M]. 北京: 科学出版社, 2008: 25-26, 48. [11] 卓金武, 魏永生, 秦健, 李必文. MATLAB在数学建模中的应用[M]. 北京: 北京航空航天大学出版社, 2011.