石油污染水对小麦的毒性胁迫
Toxicity of Oil Polluted Water on Wheat (Triticum aestivum)
DOI: 10.12677/AEP.2013.32004, PDF, HTML, 下载: 3,048  浏览: 7,248  科研立项经费支持
作者: 李亚宁, 刘伟, 李国东*:南开大学滨海学院环境科学与工程系,天津;陈春:农业部环境保护科研监测所,农业部产地环境与农产品安全重点开放实验室/天津农业环境与农产品安全重点开放实验室,天津
关键词: 石油污染水小麦(Triticum aestivum)叶绿素(CHL)超氧化物歧化酶(SOD)Oil Polluted Water; Wheat (Triticum aestivum); Chlorophyll (CHL); Superoxide Dismutases (SOD)
摘要: 为了探明石油污染水的毒理效应,通过实验室人工控制毒理实验,研究了石油污染水暴露对小麦叶片叶绿素(CHL)和超氧化物歧化酶(SOD)活性的影响。结果显示:染毒7 d后,各浓度组小麦叶片的CHL含量均被显著(P < 0.01)抑制,并随着石油污染水稀释程度的降低而逐渐降低。相反小麦叶片的SOD酶活性被显著(P < 0.01)诱导,但是,同样随着石油污染水稀释程度的降低,而呈现逐渐降低的趋势。综上,CHL和SOD均可作为石油污染水对植物毒理效应影响的生物标志物。
Abstract: The toxic effects of oil polluted water on the content of CHL and the superoxide dismutases (SOD) activity of wheat (Triticum aestivum) were examined in this study. The results indicated that after the 7-day exposure, the CHL content in wheat leaves among all the treatments was significantly (P < 0.01) decreased compared with the control. And it decreased as the oil polluted water concentrations increased. On the contrary, the SOD activity in wheat leaves was induced significantly (P < 0.01). Furthermore, the SOD activity increased with the increasing oil polluted water con-centrations. These results indicated that both the CHL content and SOD activity could be recognized as good bio-markers for evaluating the effects of oil polluted water exposure.
文章引用:李亚宁, 刘伟, 陈春, 李国东. 石油污染水对小麦的毒性胁迫[J]. 环境保护前沿, 2013, 3(2): 25-27. http://dx.doi.org/10.12677/AEP.2013.32004

参考文献

[1] N. Bharti, S. Srivastava and P. S. Srivastava. Alleviation of cadmium-induced decrease in biomass of Pisum and Sesamum by inorganic nutrients. Bulletin of Environmental and Contami- nation Toxicology, 2001, 67(4): 496-502.
[2] M. E. Wang, Q. X. Zhou. Joint stress of chlorimuron-ethyl and cadmium on wheat Triticum aestivum at biochemical levels. Environmental Pollution, 2006, 144(2): 572-580.
[3] Y. N. Li, Q. X. Zhou, F. X. Li, et al. Effects of tetrabromo- bisphenol A as an emerging pollutant on wheat (Triticum aesti- vum) at biochemical levels. Chemosphere, 2008, 74(1): 119-124.
[4] 魏复盛. 水和废水监测分析方法(第四版)[M]. 北京: 中国环境科学出版社, 2002: 740-743.
[5] A. Hegedüs, S. Erdei and G. Horvath. Comparative studies of H2O2 detoxifying enzymes in green and greening barley seedling under cadmium stress. Plant Science, 2001, 160(6): 1085-1093.
[6] 李合生, 孙群, 赵世杰等. 植物生理生化实验原理和技术 [M]. 北京: 高等教育出版社, 2000: 167-169.
[7] 陶玲, 任珺, 崔桂阳. Pb污染对白菜的生态毒理效应研究[J]. 生态毒理学报, 2010, 5(6): 876-883.
[8] G. Horváth, M. Droppa, A. Oravecz, et al. Formation of the photosynthetic apparatus during greening of cadmium-poisoned barley leaves. Planta, 1996, 199(2): 238-243.
[9] 张副锁. 环境胁迫与植物营养[M]. 北京: 中国农业大学出版社, 1993: 79.
[10] X. H. Yi, H. Ding, Y. T. Lu, H. H. Liu, M. Zhang and W. Jiang. Effects of long-term alachlor exposure on hepatic antioxidant defense and detoxifying enzyme activities in crucian carp (Caras- sius auratus). Chemosphere, 2007, 68(8): 1576-1581.