材料科学  >> Vol. 3 No. 4 (July 2013)

电流退火Fe76Si7.6B9.5P5C1.9合金薄带的纵向巨磁阻抗效应
Longitudinal Giant Magneto-Impedance Effect of Fe76Si7.6B9.5P5C1.9 Alloy Ribbon by Current Annealing

DOI: 10.12677/MS.2013.34029, PDF, HTML, 下载: 2,785  浏览: 8,563  科研立项经费支持

作者: 马云, 李文忠, 金林枫, 寇建龙, 方允樟:浙江师范大学LED芯片研发中心

关键词: 纵向巨磁阻抗电流退火线性Longitudinal Giant Magneto Impedance; Current Annealing; Linear

摘要: 有效地调控非晶软磁材料的巨磁阻抗,能使其应用的领域更加广泛。本文研究了在大气环境下电流退火过程中Fe76Si7.6B9.5P5C1.9合金薄带纵向巨磁阻抗的变化规律,发现氧化可以调控样品的巨磁阻抗性能。通过10 min退火,样品磁性能得到明显改善,灵敏度大幅度提高;1 h退火,样品的GMI表现出良好的线性关系。
Abstract: Effectively controlling the giant magneto impedance (GMI) of amorphous soft magnetic materials can expand the application fields. In this paper, the longitudinal GMI changes of the Fe76Si7.6B9.5 P5C1.9 alloy ribbon-films are studied by using current annealing in the open air. It shows that oxidize process can control the performance of the samples GMI effect. For annealing of 10 min, the soft magnetic properties are improved obviously and the sensitivity is increased greatly. For annealing of 1 h, the GMI of sample shows a good linear relationship.

文章引用: 马云, 李文忠, 金林枫, 寇建龙, 方允樟. 电流退火Fe76Si7.6B9.5P5C1.9合金薄带的纵向巨磁阻抗效应[J]. 材料科学, 2013, 3(4): 157-159. http://dx.doi.org/10.12677/MS.2013.34029

参考文献

[1] M. H. Phan, H. X. Peng, S. C Yu, et al. Optimized giant magne- toimpedance effect in amorphous and nanocrystalline materials. Journal of Applied Physics, 2006, 99(8): Article ID: 08C505.
[2] I. Giouroudi, H. Hauser, L. Musiejovsky, et al. Giant magneto- impedance sensor integrated in an oscillator system. Journal of Applied Physics, 2006, 99(8): Article ID: 08D906.
[3] G. V. Kurlyandskaya, V. F. Miyar, A. Saad, et al. Giant magne- toimpedance: A label-free option for surface effect monitoring. Journal of Applied Physics, 2007, 101(5): Article ID: 054505.
[4] T. Nakai, K. Ishiyama and J. Yamasaki. Analysis of steplike change of impedance for thin-film giant magnetoimpedance element with inclined stripe magnetic domain based on magnetic anergy. Journal of Applied Physics, 2007, 101(9): Article ID: 09N106.
[5] K. Mohri, T. Uchiyama and P. V. Panina. Recent advances of micro magnetic sensors and sensing application. Sensors and Actuators A: Physical, 1997, 59(1-3): 1-8.
[6] R. Valensuela, J. J. Freijo, A. Salcedo, A. Hernando, et al. A mi- niature dc current sensor based on magnetoimpedance. Journal of Applied Physics, 1997, 81(8): 4301-4303.
[7] M. Tejedor, B. Hernando, M. L. Sanchez, et al. Magneto-im- pedance effect in amorphous ribbons for stress sensor applica- tion. Sensors and Actuators A: Physical, 2001, 81(1-3): 98-101.
[8] M. H. Phan, H. X. Peng. Giant magnetoimpedance materials: Fundamentals and applications. Progress in Materials Science, 2008, 53(2): 323-420.
[9] Q. K. Man, Y. Z. Fang. A new type of longitudinally driven GMI effect of FeCo-based alloy. Chinese Science Bulletin, 2008, 53(3): 329-334.
[10] C. G. Kim, K. J. Jang, H. C. Kim, et al. Asymmetric giant mag- netoimpedance in field-annealed Co-based amorphous ribbon. Journal of Applied Physics, 1999, 85(8): 5447-5449.
[11] 杨介信, 杨燮龙, 陈国等. 一种新型的纵向驱动巨磁致阻抗效应[J]. 科学通报, 1998, 43(10): 1051-1053.