聚阴离子型正硅酸盐锂离子电池正极材料的研究进展
Recent Advances in Polyanion Type Orthosilicate Cathode Materials for Lithium Ion Battery
DOI: 10.12677/MS.2013.34030, PDF, HTML, XML, 下载: 4,820  浏览: 18,132  国家自然科学基金支持
作者: 张峥, 马慎思, 赵红远:电子科技大学微电子与固体电子学院;刘兴泉:电子薄膜与集成器件国家重点实验室
关键词: 锂离子电池正硅酸盐正极材料聚阴离子Li-Ion Batteries; Orthosilicate; Cathode Materials; Polyanion
摘要: 综述了各种聚阴离子型正硅酸盐锂离子电池正极材料的研究现状,讨论了该类材料的结构与性能之间的关系,分析了其相变机制与可能的锂离子通道,并与其他聚阴离子体系材料进行了比较。同时对该类材料的合成方法和改善材料电化学性能的措施分别进行了总结和评述。
Abstract: Recent progress on the polyanion type orthosilicate cathode materials for lithium ion battery is reviewed. The relationship between the structures and properties of orthosilicate cathode materials is discussed, and the phase transfor- mation mechanisms and possible lithium ion channels are analyzed. The synthesis methods and improving measures of electrochemical performance for electrode materials are summarized and prospected, respectively.
文章引用:张峥, 刘兴泉, 马慎思, 赵红远. 聚阴离子型正硅酸盐锂离子电池正极材料的研究进展[J]. 材料科学, 2013, 3(4): 160-167. http://dx.doi.org/10.12677/MS.2013.34030

参考文献

[1] B. Scrosati. Challenge of portable power. Nature, 1995, 373(6515): 557-558.
[2] J. M Tarascon, M. Armand. Issues and challenges facing re- chargeable lithium batteries. Nature, 2001, 414(6861): 359-367.
[3] B. Dunn, H. Kamath, J. M. Tarascon. Electrical energy storage for the grid: A battery of choices. Science, 2011, 334(6058): 928-935.
[4] J. Li, C. Daniel and D. Wood. Materials processing for lithium- ion batteries. Journal of Power Sources, 2010, 196(9): 2452- 2460.
[5] A. K Padhi, V Manivannan and J. B Goodenough. Tuning the position of the redox couples in materials with NASICON struc- ture by anionic substitution. Journal of the Electrochemical Society, 1998, 145(5): 1518-1520.
[6] A. K. Padhi, K. S. Nanjundaswamy and J. B. Goodenough. Phospho-olivines as positive-electrode materials for recharge- able lithium batteries. Journal of the Electrochemical Society, 1997, 144(4): 1188-1194.
[7] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, et al. Map- ping of transition metal redox energies in phosphates with NASICON structure by lithium intercalation. Journal of the Electrochemical Society, 1997, 144(8): 2581-2586.
[8] [8] A. K. Padhi, K. S. Nanjundaswamy, C. Masquelier, et al. Effect of structure on the Fe3+/Fe2+ redox couple in iron phosphates. Journal of the Electrochemical Society, 1997, 144(5): 1609- 1613.
[9] J. B. Goodenough, Y. Kim. Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2009, 22(3): 587-603.
[10] 施志聪, 杨勇, 聚阴离子型锂离子电池正极材料研究进展[J]. 化学进展, 2005, 17(4): 604-613.
[11] A. Nyten, A. Abouimrane, M. Armand, et al. Electrochemical performance of Li2FeSiO4 as a new Li-battery cathode material. Electrochemistry Communications, 2005, 7(2): 156-160.
[12] R. Dominko, M. Bele, M. Gaberscek, et al. Structure and electrochemical performance of Li2MnSiO4 and Li2FeSiO4 as potential Li-battery cathode materials. Electrochemistry Com- munications, 2006, 8(2): 217-222.
[13] R. Dominko, M. Bele, A. Kokalj, et al. Li2MnSiO4 as a potential Li-battery cathode material. Journal of Power Sources, 2007, 174(2): 457-461.
[14] Z. L. Gong, Y. X. Li and Y. Yang. Synthesis and characterization of Li2MnxFe1-xSiO4 as a cathode material for lithium-ion bat- teries. Electrochemical and Solid-State Letters, 2006, 9(12): A542- A544.
[15] Z. L. Gong, Y. X. Li and Y. Yang. Synthesis and electrochemical performance of Li2CoSiO4 as cathode material for lithium ion batteries. Journal of Power Sources, 2007, 174(2): 524-527.
[16] S. Q. Wu, Z. Z. Zhu, Y. Yang, et al. Structural stabilities, elec- tronic structures and lithium deintercalation in LixMSiO4(M = Mn, Fe, Co, Ni): A GGA and GGA plus U study. Computational Materials Science, 2009, 44(4): 1243-1251.
[17] A. Yamada, S. C. Chung and K. Hinokuma. Optimized LiFePO4 for lithium battery cathodes. Journal of the Electrochemical So- ciety, 2001, 148(3): A224-A229.
[18] A. Nyten, S. Kamali, L. Haggstrom, et al. The lithium ex- traction/insertion mechanism in Li2FeSiO4. Journal of Materials Chemistry, 2006, 16(23): 2266-2272.
[19] A. R. West, P. G. Bruce. Tetragonal-packed crystal structures. Acta Crystallographica Section B: Structural Crystallography and Crystal Chemistry 1982, 38(7): 1891-1896.
[20] P. G. Bruce, A. R. West. Phase diagram of the LISICON, solid electrolyte system, Li4GeO4Zn2GeO4. Materials Research Bul- letin, 1980, 15(3): 379-385.
[21] 陈立泉, 王昌庆, 王连忠等. LISICON(锗酸锌锂) 单晶的 Li+离子电导[J]. 物理学报, 1980, 29(5): 661-666.
[22] D. H. Seo, H. Kim, I. Park, et al. Polymorphism and phase transformations of Li2-x FeSiO4(0 < x < 2) from first principles. Physical Review B, 2011, 84(22): 220106(1-5).
[23] M. E. Arroyo-de Dompablo, M. Armand, J. M. Tarascon, et al. On-demand design of polyoxianionic cathode materials based on electronegativity correlations: An exploration of the Li2MSiO4 system(M = Fe, Mn, Co, Ni). Electrochemistry Communications, 2006, 8(8): 1292-1298.
[24] V. V. Politaev, A. A. Petrenko, V. B. Nalbandyan, et al. Crystal structure, phase relations and electrochemical properties of mo- noclinic Li2MnSiO4. Journal of Solid State Chemistry, 2007, 180(3): 1045-1050.
[25] S. I. Nishimura, S. Hayase, R. Kanno, et al. Structure of Li2FeSiO4. Journal of the American Chemical Society, 2008, 130(40): 13212- 13213.
[26] G. H. Zhong, Y. L. Li, P. Yan, et al. Structural electronic and electrochemical properties of cathode materials Li2MSiO4(M = Mn, Fe, and Co): Density functional calculations. The Journal of Physical Chemistry C, 2010, 114(8): 3693-3700.
[27] C. Sirisopanaporn, A. Boulineau, D. Hanzel, et al. Crystal struc- ture of a new polymorph of Li2FeSiO4. Inorganic Chemistry, 2010, 49(16): 7446-7451.
[28] O. Kamon-In, W. Klysubun, W. Limphirat, et al. An Insight into crystal, electronic, and local structures of lithium iron silicate (Li2FeSiO4) materials upon lithium extraction. Physica B: Cond- ensed Matter, 2013, 416(0): 69-75.
[29] A. R. Armstrong, N. Kuganathan, M. S. Islam, et al. Structure and lithium transport pathways in Li2FeSiO4 cathodes for li- thium batteries. Journal of the American Chemical Society, 2011, 133(33): 13031-13035.
[30] [30] A. Kojima, T. Kojima, M. Tabuchi, et al. Crystal structure and electrochemical performance of a new lithium trivalent iron silicate. Journal of the Electrochemical Society, 2012, 159(6): A725-A729.
[31] C. Sirisopanaporn, C. Masquelier, P. G. Bruce, et al. Dependence of Li2FeSiO4 electrochemistry on structure. Journal of the Ameri- can Chemical Society, 2011, 133(5): 1263-1265.
[32] C. Eames, A. R. Armstrong, P. G. Bruce, et al. Insights into changes in voltage and structure of Li2FeSiO4 polymorphs for lithium-ion batteries. Chemistry of Materials, 2012, 24(11): 2155- 2161.
[33] D. Su, H. Ahn and G. X. Wang. Ab initio calculations on Li-ion migration in Li2FeSiO4 cathode material with a P21 symmetry structure. Applied Physics Letters, 2011, 99(14): Article ID: 141909.
[34] A. Liivat, J. O. Thomas. Li-ion migration in Li2FeSiO4-related cathode materials: A DFT study. Solid State Ionics, 2009, 192(1): 58-64.
[35] I. Belharouak, A. Abouimrane and K. Amine. Structural and electrochemical characterization of Li2MnSiO4 cathode material. The Journal of Physical Chemistry C, 2009, 113(48): 20733- 20737.
[36] R. J. Gummow, N. Sharma, V. K. Peterson et al. Crystal che- mistry of the Pmnb polymorph of Li2MnSiO4. Journal of Solid State Chemistry, 2012, 188: 32-37.
[37] N. Kuganathan, M. S. Islam. Li2MnSiO4 lithium battery material: atomic-scale study of defects, lithium mobility, and trivalent dopants. Chemistry of Materials, 2009, 21(21): 5196-5202.
[38] A. Kokalj, R. Dominko, G. Mali, et al. Beyond one-electron reaction in Li cathode materials: Designing Li2MnxFe1-xSiO4. Chemistry of Materials, 2007, 19(15): 3633-3640.
[39] Y. X. Li, Z. L. Gong and Y. Yang. Synthesis and characterization of Li2MnSiO4/C nanocomposite cathode material for lithium ion batteries. Journal of Power Sources, 2007, 174(2): 528-532.
[40] P. Larsson, R. Ahuja, A. Liivat, et al. Structural and electro- chemical aspects of Mn substitution into Li2FeSiO4 from DFT calculations. Computational Materials Science, 2010, 47(3): 678- 684.
[41] M. Bini, S. Ferrari, D. Capsoni, et al. Insight into cation disorder of Li2Fe0.5Mn0.5SiO4. Journal of Solid State Chemistry, 2013, 200: 70-75.
[42] D. Santamaria-Perez, U. Amador, J. Tortajada, et al. High- Pressure Investigation of Li2MnSiO4 and Li2CoSiO4 Electrode Materials for Lithium-Ion Batteries. Inorganic Chemistry, 2012, 51(10): 5779-5786.
[43] A. R. Armstrong, C. Lyness, M. Ménétrier, et al. Structural Polymorphism in Li2CoSiO4 Intercalation Electrodes: A Com- bined Diffraction and NMR Study. Chemistry of Materials, 2010, 22(5): 1892-1900.
[44] Z. Peng, H. Miao, H. F. Yin, et al. PEG-assisted solid state synthesis and characterization of carbon-coated Li2MnSiO4 ca- thode materials for lithium ion battery. International Journal of Electrochemical Science, 2013, 8: 903-913.
[45] Z. M. Zheng, Y. Wang, A. Zhang, et al. Porous Li2FeSiO4/C nanocomposite as the cathode material of lithium-ion batteries. Journal of Power Sources, 2012, 198: 229-235.
[46] V. Aravindan, K. Karthikeyan, S. Ravi, et al. Adipic acid assisted sol-gel synthesis of Li2MnSiO4 nanoparticles with improved lithium storage properties. Journal of Materials Chemistry, 2010, 20(35): 7340-7343.
[47] C. Deng, S. Zhang and S. Y. Yang. Effect of Mn substitution on the structural, morphological and electrochemical behaviors of Li2Fe1-xMnxSiO4 synthesized via citric acid assisted sol-gel me- thod. Journal of Alloys and Compounds, 2009, 487(1-2): L18-L23.
[48] Z. P. Yan, S. Cai, L. J. Miao, et al. Synthesis and characterization of in situ carbon-coated Li2FeSiO4 cathode materials for lithium ion battery. Journal of Alloys and Compounds, 2012, 511(1):101-106.
[49] C. Dippel, S. Krueger, R. Kloepsch, et al. Aging of Li2FeSiO4 cathode material in fluorine containing organic electrolytes for lithium-ion batteries. Electrochimica Acta, 2012, 85: 66-71.
[50] D. Rangappa, K. D. Murukanahally, T. Tomai, et al. Ultrathin nanosheets of Li2MSiO4(M = Fe, Mn) as high-capacity Li-ion battery electrode. Nano Letters, 2012, 12(3): 1146-1151.
[51] Z. X. Chen, S. Qiu, Y. L. Cao, et al. Hierarchical porous Li2FeSiO4/C Composite with 2 Li storage capacity and long cycle stability for advanced Li-ion batteries. Journal of Electro- analytical Chemistry, 2013, 1(16): 4988-4992.
[52] T. Muraliganth, K. R. Stroukoff and A. Manthiram. Micro- wave-solvothermal synthesis of nanostructured Li2MSiO4/C(M = Mn and Fe) cathodes for lithium-ion batteries. Chemistry of Materials, 2010, 22(20): 5754-5761.
[53] B. Shao, Y. Abe and I. Taniguchi. Synthesis and electrochemical characterization of Li2FexMn1−xSiO4/C(0 ≤ x ≤ 0.8) nanocom- posite cathode for lithium-ion batteries. Powder Technology, 2013, 235: 1-8.
[54] A. Nyten, M. Stjerndahl, H. Rensmo, et al. Surface charac- terization and stability phenomena in Li2FeSiO4 studied by PES/XPS. Journal of Materials Chemistry, 2006, 16(34): 3483- 3488.
[55] C. Deng, S. Zhang, Y. Gao, et al. Regeneration and characteri- zation of air-exposed Li2FeSiO4. Electrochimica Acta, 2011, 56(21): 7327-7333.
[56] X. B. Huang, X. Li, H. Y. Wang, et al. Synthesis and electro- chemical performance of Li2FeSiO4/carbon/carbon nano-tubes for lithium ion batteryo-tubes for lithium ion battery. Electro- chimica Acta, 2010, 55(24): 7362-7366.
[57] V. Aravindan, K. Karthikeyan, S. Amaresh, et al. Superior Lithium storage properties of carbon coated Li2MnSiO4 cathodes. Electrochemical and Solid-State Letters, 2011, 14(4): A33-A35.
[58] X. B. Huang, H. H. Chen, S. B. Zhou, et al. Synthesis and characterization of nano-Li1.95FeSiO4/C composite as cathode material for lithium-ion batteries. Electrochimica Acta, 2012, 60, 239-243.
[59] J. Y. Bai, Z. L. Gong, D. P. Lv, et al. Nanostructured 0.8Li2FeSiO4/ 0.4Li2SiO3/C composite cathode material with enhanced electro- chemical performance for lithium-ion batteries. Journal of Ma- terials Chemistry, 2012, 22(24): 12128-12132.
[60] S. Zhang, C. Deng, B. L. Fu, et al. Effects of Cr doping on the electrochemical properties of Li2FeSiO4 cathode material for lithium-ion batteries. Electrochimica Acta, 2010, 55(28): 8482- 8489.
[61] S. Zhang, C. Deng, B. L. Fu, et al. Doping effects of magnesium on the electrochemical performance of Li2FeSiO4 for lithium ion batteries. Journal of Electroanalytical Chemistry, 2010, 644(2): 150-154.
[62] 兰建云, 赵敏寿, 王艳芝等. Al3+掺杂对Li2FeSiO4结构和电化学性能影响的研究[J]. 无机化学学报, 2011, 27(8): 1497- 1502.
[63] 刘文刚, 许云华, 杨蓉等. Li2Mn0.9Ti0.1SiO4锂离子电池正极材料的合成及其性能[J]. 热加工工艺, 2009, 38(16): 25-28.
[64] H. Hao, J. B. Wang, J. L. Liu, et al. Synthesis, characterization and electrochemical performance of Li2FeSiO4/C cathode ma- terials doped by vanadium at Fe/Si sites for lithium ion batteries. Journal of Power Sources, 2012, 210, 397-401.
[65] C. Deng, S. Zhang, S. Y. Yang, et al. Synthesis and characteri- zation of Li2Fe0.97M0.03SiO4(M = Zn2+, Cu2+, Ni2+) cathode ma- terials for lithium ion batteries. Journal of Power Sources, 2011, 196(1): 386-392.
[66] S. I. Furusawa, A. Kamiyama and T. Tsurui. Fabrication and ionic conductivity of amorphous lithium meta-silicate thin film. Solid State Ionics, 2008, 179(15): 536-542.
[67] S. I. Furusawa, T. Kasahara and A. Kamiyama. Fabrication and ionic conductivity of Li2SiO3 thin film. Solid State Ionics, 2009, 180(6): 649-653.
[68] 马慎思, 张峥, 刘兴泉等. 锂离子电池Li2Fe1-xVxSiO4复合正极材料的合成[J]. 化工科技, 2013, 21(3): 84-89.