[1]
|
陈大为, 王宝玲. 神农本草经图鉴[J]. 天津: 天津科学技术出版社, 2009.
|
[2]
|
S. A. V. Alvarenga, J. P. Gastmans AND G. V. Rodrigues. A com- puter-assisted approach for chemotaxonomic studies-diterpenes in Lamiaceae. Phytochemistry, 2001, 56(6): 583-595.
|
[3]
|
L. Zhou, Z. Zuo AND M. S. S. Chow. Danshen: An overview of its chemistry, pharmacology, pharmacokinetics, and clinical use. Journal of Clinical Pharmacology, 2005, 45(12): 1345-1359.
|
[4]
|
X. Wang, S. L. Morris-Natschke and K. H. Lee. New develop- ments in the chemistry and biology of the bioactive constituents of Tanshen. Medicinal Research Reviews, 2007, 27(1): 133-148.
|
[5]
|
K. K. Wong, T. W. Ho, H. Q. Lin, K. F. Lau, J. A. Rudd, C. K. Chung, K. P. Fung, P. C. Shaw and C. C. D. Wan. Crypto- tanshinone, an acetyl-cholinesterase inhibitor from Salvia milti- orrhiza, ameliorates scopolamine-induced amnesia in Morris water maze task. Planta Medica, 2010, 76(3): 228-234.
|
[6]
|
X. Yao, X. Q. Wang, S. L. Ma and B. Y. Chen. Sodium tans- hinone IIA solfonate derived from Salvia miltiorrhiza Bunge up-regulate the expression of prolactin releasing peptide (PrRP) in the medulla oblongata in ovariectomized rats. Biochemical Pharmacology, 2006, 72: 582-587.
|
[7]
|
D. H. Kim, S. Kim, S. J. Jeon, K. H. Son, S. Lee, B. H. Yoon, J. H. Cheong, K. H. Ko and J. H. Ryu. Tanshinone I enhances learning and memory, and ameliorates memory impairment in mice via the extracellular signal-regulated kinase signalling pathway. British Journal of Pharmacology, 2009, 158(4): 1131- 1142.
|
[8]
|
G. Honda, Y. Koezuka and M. Tabata. Isolation of an antidermatophytic substance from the root of Salvia miltiorrhiza. Chemical & Pharmaceutical Bulletin, 1988, 36: 408-411.
|
[9]
|
B. Nur Tana, M. Kalogaa and O. A. Radtke. Abietane diter- penoids and triterpenoic acids from Salvia cilicica and their antileishmanial activities. Phytochemistry, 2002, 61(8): 881-884.
|
[10]
|
S. T. Withers and J. D. Keasling. Biosynthesis and engineering of isoprenoid small molecules. Applied Microbiology and Biotechnology, 2007, 73(5): 980-990.
|
[11]
|
M. H. Hsieh and H. M. Goodman. The arabidopsis IspH homo- log is involved in the plastid nonmevalonate pathway of iso- prenoid biosynthesis. Plant Physiology, 2005, 138(2): 641-653.
|
[12]
|
M. Seemann, B. Tse Sum Bui, M. Wolff, M. Miginiac-Maslow and M. Rohmer. Isoprenoid biosynthesis in plang chloroplasts via the Mep pathway: Direct thylakoid/ferredoxin-dependent photoreduction of GcpE/IspG. FEBS Letters, 2006, 580(6): 1547-1552.
|
[13]
|
M. Köksal, Y. Jin, R. M. Coates, R. Croteau and D. W. Chris- tianson. Taxadiene synthase structure and evolution of modular architecture in terpene biosynthesis. Nature, 2011, 469(7328): 116-122.
|
[14]
|
D. M. Martin, J. Faldt and J. Bohlmann. Functional charac- terization of nine Norway Spruce TPS genes and evolution of gymnosperm terpene synthases of the TPS-d subfamily. Plant Physiology, 2004, 135(4): 1908-1927.
|
[15]
|
S. J. Wu, M. Shi and J. Y. Wu. Cloning and characterization of the I-deoxy-D-xylulose 5-phosphate reductoisomerase gene for diterpenoidtanshinone biosynthesis in Salvia miltiorrhiza (Chin- ses sage) hairy roots. Biotechnology and Applied Biochemistry, 2009, 52(1): 89-95.
|
[16]
|
J. W. Wang and J. Y. Wu. Tanshinone biosynthesis in Salvia miltiorrhiza and production in plant tissue cultures. Applied Microbiology and Biotechnology, 2010, 88(2): 437-449.
|
[17]
|
Z. Dai, G. Cui, S. F. Zhou, X. Zhang and L. Huang. Cloning and characterization of a novel 3-hydroxy-3-methylglutaryl coen- zyme A reductase gene from Salvia miltiorrhiza involved in diterpenoidtanshinone accumulation. Journal of Plant Phy- siology, 2011, 168(2): 148-157.
|
[18]
|
G. Kai, H. Xu, C. Zhou, P. Liao, J. Xiao, X. Luo, L. You and L. Zhang. Metabolic engineering tanshinone biosynthetic pathway in Salvia miltiorrhiza. Metabolic Engineering, 2011, 13(3): 319- 327.
|
[19]
|
D. Ma, G. Pu, C. Lei, L. Ma, H. Wang, Y. Guo, J. Chen, Z. Du, G. Li, H. Ye and B. Liu. Isolation and characterization of AaWRKY1, an Artemisia annua transcription factor that regu- lates the amorpha-4,11-diene synthase gene, a key gene of arte- misin in biosynthesis. Plant and Cell Physiology, 2009, 50(12): 2146-2161.
|
[20]
|
W. Gao, M. L. Hillwig, L. Q. Huang, G. H. Cui, X. Y. Wang, J. Q. Kong, B. Yang and R. J. Peters. Functional genomics approach to tanshinone biosynthesis provides stereochemical in sighs. Organic Letters, 2009, 11(22): 5170-5173.
|
[21]
|
M. L. Hillwig, M. Xu, T. Toyomasu, M. S. Tiernan, G. Wei, G. Cui, L. Huang and R. J. Peters. Domain loss has independently occurred multiple times in plant terpene synthase evolution. Plant Journal, 2011, 68(6): 1051-1060.
|
[22]
|
J. Guo, Y. J. Zhou, M. L. Hillwig, Y. Shen, L. Yang, Y. J. Wang, X. A. Zhang, W. J. Liu, R. J. Peters, X. Y. Chen, Z. K. Zhao and L. Q. Huang. CYP76AH1 catalyzes turnover of miltiradiene in tanshinones biosynthesis and enables heterologous production of ferruginol in yeasts. PNAS, 2013, in press.
|
[23]
|
M. L. Metzker. Sequencing technologies-the next generation. Nature Genetics, 2010, 11(1): 31-46.
|
[24]
|
W. Hua, Y. Zhang, J. Song, L. Zhao and Z. Wang. De novo transcriptome sequencing in Salvia miltiorrhiza to identify genes involved in the biosynthesis of active ingredients. Genomics, 2011, 98(4): 272-279.
|
[25]
|
倪学斌, 苏静. 丹参地上部分有效成分的初步分析[j]. 中国药学杂志, 1995, 30(6): 336-338.
|
[26]
|
J. Gershenzon. Changes in the levels of plant secondary meta- bolites under water and nutrient stress. New York: Plenum Press, 1984: 273-320.
|
[27]
|
A. L. Shelton. Variable chemical defences in plants and their effects on herbivore behavior. Evolutionary Ecology Research, 2000, 2(2): 231-249.
|
[28]
|
陈晓亚, 刘培. 植物次生代谢的分子生物学及基因工程[J]. 生命科学, 1996, 8(2): 8-11.
|
[29]
|
L. Zhang, X. Yan, J. Wang, S. Li, P. Liao and G. Kai. Molecular cloning and expression analysis of a new putative gene encoding 3-hydroxy-3-methylglutaryl-CoA synthase from Salvia milti- orrhiza. Acta Physiologiae Plantarum, 2011, 33(3): 953-961.
|
[30]
|
H. Chen and F. Chen. Effects of yeast elicitor on the growth and secondary metabolism of a high-tanshinone-producing line of the Ti transformed Salvia miltiorrhiza cells in suspension culture. Process Biochemistry, 2000, 35(8): 837-840.
|
[31]
|
J L Zhao, L G Zhou and J Y Wu. Effects of biotic and abiotic elicitors on cell growth and tanshinone accumulation in Salvia miltiorrhiza cell cultures. Applied Microbiology and Biotech- nology, 2010, 87(1): 137-144.
|
[32]
|
X. C. Ge and J. Y. Wu. Tanshinone production and isoprenoid pathways in Salvia miltiorrhiza hairy roots induced by Ag+ and yeast elicitor. Plant Science, 2005, 168(2): 487-491.
|
[33]
|
M. Shi, K. W. Kwok and J. Y. Wu. Enhancement of tanshinone production in Salvia miltiorrhiza Bunge (red or Chinese sage) hairy-root culture by hyperosmotic stress and yeast elicitor. Bio- technology and Applied Biochemistry, 2007, 46(Pt 4): 191-196.
|
[34]
|
N. De Geyter, A. Gholami, S. Goormachtig and A. Goossens. Transcriptional machineries in jasmonate-elicited plant second- dary metabolism. Trends in Plant Science, 2012, 17(6): 349-359.
|
[35]
|
C. Q. Yang, X. Fang, X. M. Wu, Y. B. Mao, L. J. Wang and X. Y. Chen. Transcriptional regulation of plant secondary metabolism. Journal of Integrative Plant Biology, 2012, 54(10): 703-712.
|
[36]
|
M. Skibbe, N. Qu, I. Galis and I. T. Baldwin. Induced plant de- fenses in the natural environment: Nicotiana attenuata WRKY3 and WRKY6 coordinate responses to herbivory. Plant Cell, 2008, 20(7): 1984-2000.
|
[37]
|
Y. H. Xu, J. W. Wang, S. Wang, J. Y. Wang and X. Y. Chen. Characterization of GaWRKY1, a cotton transcription factor that regulates these squiterpene synthase gene (+)-delta-cadinene synthase-A. Plant Physiology, 2004, 135(1): 507-515.
|
[38]
|
Z. X. Yu, J. X. Li, C. Q. Yang, W. L. Hu, L. J. Wang and X. Y. Chen. The jasmonate-responsive AP2/ERF transcription factors AaERF1 and AaERF2 positively regulate artemisinin biosyn- thesis in Artemisia annua L. Molecular Plant, 2012, 5(2): 353- 365.
|
[39]
|
G. J. Hong, X. Y. Xue, Y. B. Mao, L. J. Wang and X. Y. Chen. Arabidopsis MYC2 interacts with DELLA proteins in regulating sesquiterpene synthase gene expression. Plant Cell Online, 2012, 24(6): 2635-2648.
|