[1]
|
M. Godvik, H. Hanche-Olsen. Existence of solutions for the Aw-Rascle traffic flow model with vacuum. Journal of Hyperbolic Differential Equations, 2008, 5(1): 45-63.
|
[2]
|
M. Sun. Interactions of elementary waves for the Aw-Rascle model. SIAM Journal on Applied Mathematics, 2009, 69(6): 1542-1558.
|
[3]
|
C. Shen, M. Sun. Formation of delta shocks and vacuum states in the vanishing pressure limit of Riemann solutions to the perturbed Aw-Rascle model. Journal of Differential Equations, 2010, 249(12): 3024-3051.
|
[4]
|
L. Pan, X. Han. The Aw-Rascle traffic model with Chaply-gin pressure. Journal of Mathematical Analysis and Applications, 2013, 401(1): 379- 387.
|
[5]
|
P. Goatin. The Aw-Rascle vehicular traffic flow model with phase transitions. Mathematical and Computer Modelling, 2006, 44(3): 287-303.
|
[6]
|
Y. Brenier. Solutions with concentration to the Riemann problem for the one-dimensional Chaplygin gas equations. Journal of Mathematical Fluid Mechanics, 2005, 7(3): 326-331.
|
[7]
|
Z. K. Guo, Y. Z. Zhang. Cosmology with a variable Chaplygin gas. Physics Letters B, 2007, 645(4): 326-329.
|
[8]
|
D. Serre. Multidimensional shock interaction for a Chaplygin gas. Archive for Rational Mechanics and Analysis, 2009, 191(3): 539-577.
|
[9]
|
G. Lai, W. C. Sheng and Y. X. Zheng. Simple waves and pressure delta waves for a Chaplygin gas in two-dimensions. Discrete and Continuous Dynamical Systems, 2011, 31(2): 489-523.
|
[10]
|
S. Chen, A. Qu. Two-dimensional Riemann problems for Chaplygin gas. SIAM Journal on Mathematical Analysis, 2012, 44(3): 2146-2178.
|
[11]
|
H. C. Yang, W. H. Sun. The Riemann problem with delta initial data for a class of coupled hyperbolic systems of conservation laws. Nonlinear Analysis, 2007, 67(11): 3041-3049.
|
[12]
|
Z. Wang, Q. L. Zhang. The Riemann problem with delta initial data for the one-dimensional Chaplygin gas equations. Acta Mathematica Sci- entia, 2012, 32B(3): 825-841.
|
[13]
|
H. Cheng, H. Yang. Riemann problem for the relativistic Chaplygin Euler equations. Journal of Mathematical Analysis and Applications, 2011, 381(1): 17-26.
|