cles.aspx?searchCode=%e6%b3%a2%e5%89%8d%e8%a7%a3&searchField=keyword&page=1' target='_blank'>波前解;上下解方法 Prey-Predator Fishery Model; Stability; Linearized Method; Traveling Wavefront; Upper andLower Solution



Abstract: In this work, we introduce the bio-economic harvesting of a prey-predator fishery diffusion model with toxicity in which both the species are infected by some toxicants released by some other species. We obtain some results for the locally asymptotical stability of the nonnegative constant equilibria, and the global stability of the unique positive equilibrium is also obtained by constructing suitable Lyapunov function. Numerical simulations are illustrated to confirm our rigorous results. Finally, via the upper and lower solution method, we also show the existence of traveling wave fronts connecting the zero solution with the positive equilibrium of this system.

文章引用: 段彩霞, 杜鹏, 廖新元. 一类渔业生态扩散系统的动力性分析[J]. 应用数学进展, 2013, 2(3): 127-134.

[1] T. Das, R. N. Mukherjee and K. S. Chaudhuri. Harvesting of a prey-predator fishery in the presence of toxicity. Applied Mathematical Model- ing, 2009, 33(5): 2282-2292.
[2] T. K. Kar, K. S. Chaudhuri. On non-selective harvesting of two competing fish species in the presence of toxicity. Ecological Modeling, 2003, 161(1-2): 125-137.
[3] G. Lin, Y. Hong. Travelling wave fronts in a vector disease model with delay. Applied Mathematical Modeling, 2008, 32(12): 2831-2838.
[4] J. W. H. So, X. Zou. Traveling waves for the diffusive Nicholson’s blowflies equation. Applied Mathematical Computation, 2001, 122(3): 385- 392.
[5] J. Huang, X. Zou. Traveling wavefronts in diffusive and cooperative Lotka-Volterra system with delays. Journal of Mathematical Analysis and Applications, 2002, 271(2): 455-466.
[6] Z. Ge, Y. He. Traveling wavefronts for a two-species predator-prey system with diffusion terms and stage structure. Applied Mathematical Modeling, 2009, 33(3): 1356-1365.
[7] X. Hou, Y. Li. Local stability of traveling-wave solutions of nonlinear reaction-diffusion equations. Discrete Continuous Dynamical System, 2006, 15(2): 681-701.
[8] H. Smith, X. Zhao. Global asymptotic stability of traveling waves in delayed reaction-diffusion equations. SIAM: SIAM Journal on Mathe- matical Analysis, 2001, 31(3): 514-534.
[9] J. Wu, X. Zou. Traveling wave fronts of reaction-diffusion systems with delay. Journal of Dynamics and Differential Equations, 2001, 13(3): 651-687.
[10] X. Liao, X. Tang and S. Zhou. Existence of traveling wave-fronts in a cooperative systems with discrete delays. Applied Mathematical Compu- tation, 2009, 215(5): 1806-1812.
[11] X. Y. Liao, Y. M. Chen and S. F. Zhou. Traveling wavefronts of a prey-predator diffusion system with stage-structure and harvesting. Journal of Computational and Applied Mathematics, 2011, 235(8): 2560-2568.