# 一个Toda晶格方程的条件对称Conditional Symmetries of a Toda Lattice Equation

DOI: 10.12677/AAM.2013.23017, PDF, HTML, 下载: 2,389  浏览: 8,901

Abstract: In this paper, the discrete Lie point symmetry group analysis method is applied on a nonlinear dif- ferential-difference Toda lattice equation (i.e. a Toda-like equation), i.e. firstly, the Toda lattice equation is reduced by using Lie point symmetry to get the overdetermined equations corresponding to this Toda lattice equation, then a conditional symmetry is introduced to solve the overdetermined equations, so the similarity reduction for the Toda lattice equation is obtained, and then the new exact solutions of this Toda lattice equa- tion are obtained.

 [1] 范兴华. 离散非线性微分–差分晶格系统的孤立波和局域模分析[D]. 江苏大学, 2007. [2] 张隽, 潘祖梁. 非齐次Toda晶格的对称, 精确解和可积性[J]. 高校应用数学学报A辑, 2002, 17(2): 140-144. [3] 沈守枫. 非线性系统若干问题研究[D].浙江大学, 2005. [4] 张隽, 潘祖梁. 几类非线性差分方程的对称和精确解[J]. 高校应用数学学报A 辑, 2001, 16(2): 143-146. [5] 唐晓艳. 2 + 1维非线性系统的局域激发和对称性研究[D]. 上海交通大学, 2004. [6] D. Leivi, O. Ragnisco. The inhomogeneous Toda lattice: Its hierarchy and Darboux-Bäcklund transformation. Journal of Physics A: Mathe- matical and General, 1991, 24(8): 1729-1740. [7] P. J. Olver. Applications of Lie groups to differential equations. New York: Springer, 1986. [8] D. Levi, P. WintIerniz. Continuous symmetries of discrete equations. Physics Letters A, 1991, 152(7): 335-338. [9] D. Levi, P. WintIerniz. Symmetries and conditional symmetries of differential-difference equations. Journal of Mathematical Physics, 1993, 34(8): 3713-3730. [10] Z. H. Jiang. Lie symmetries and their local determinacy for a class of differential-difference equations. Physics Letters A, 1998, 240(3): 137- 143.