节流圈位置对蒸汽干燥器工作性能的影响研究
The Numerical Study of the Throttle Coil Location Effects on Steam Dryer Working Performance
DOI: 10.12677/APP.2013.36023, PDF, HTML,  被引量 下载: 3,048  浏览: 11,463 
作者: 旬振宇:海军驻大连船舶重工集团有限公司军事代表室,大连;蔡 林, 刘东民, 庹艾莉:中国舰船研究设计中心,武汉
关键词: 节流圈干燥器水蒸汽CFD Throttle Coil; Steam Dryer; Water Vapor; CFD
摘要: 本文利用CFD方法分析了蒸汽干燥器内流场特性,并讨论了饱和蒸汽管路节流圈位置对蒸汽干燥器工作性能的影响。结果表明,过热蒸汽和饱和蒸汽流量比是影响干燥器出口蒸汽干度的重要因素,随着下游用户蒸汽耗量的增加,过热蒸汽与饱和蒸汽流量比和出口过热度增大,干燥器存在临界用户耗气量,当下游用户耗气量低于临界流量后,干燥器出口蒸汽干度为0。节流圈位置对干燥器工作性能的影响不可忽略,在本文模拟的工况下,节流圈与过热蒸汽管路中心线距离由40 mm增大到300 mm后,干燥器的临界用户耗气量增大了21.23%。 This paper investigates the flow field of a steam dryer and the effects of throttle coil location on dryer working performance. The results show that the ratio of superheated steam to saturated steam is the key factor. As the steam consumption of downstream users decreases, the outlet superheat degree increases. There is a critical value of downstream users steam consumption, when the consumption is lower than critical value, the superheat degree is zero. For the various flow pattern in the various simulated conditions of this paper, the distance between throttle coil and superheat steam pipe centerline is increased from 40 mm to 300 mm, and the critical value of consumption increases by 21.23%. 
文章引用:旬振宇, 蔡林, 刘东民, 庹艾莉. 节流圈位置对蒸汽干燥器工作性能的影响研究[J]. 应用物理, 2013, 3(6): 120-124. http://dx.doi.org/10.12677/APP.2013.36023

参考文献

[1] 蔡颐年. 蒸汽轮机[M]. 西安: 西安交通大学出版社, 1988.
[2] 黄树红. 汽轮机原理[M]. 北京: 中国电力出版社, 2008.
[3] 张广卿. 油田专用微过热蒸汽发生器[J]. 油气田地面工程, 2012, 31(5): 86-87.
[4] C. Lin, H. Miao. A numerical study on the supersonic steam ejector use in steam turbine system. Mathematical Problems in Engineering, 2013, 2013: Article ID 651483.
[5] T. Sriveerakul, S. Aphornratana and K. Chunnanond. Performance prediction of steam ejector using computational fluid dynamics: Part 1. Validation of the CFD results. International Journal of Thermal Sciences, 2007, 46(8): 812-822.
[6] W. Wagner, J. R. Cooper, A. Dittmann, et al. The IAPWS industrial formulation 1997 for the thermodynamic properties of water and steam. Journal of Engineering for Gas Turbines and Power, 2000, 122(1): 150-180.