连续爆轰发动机燃烧室内压力分布的实验研究
Experimental Research on the Pressure Distribution of Continuous Detonation Engines
DOI: 10.12677/JAST.2013.12002, PDF, HTML, XML,  被引量 下载: 9,541  浏览: 40,535 
作者: 李永生*, 王健平, 石天一, 王宇辉, 刘宇思, 李洋:北京大学工学院燃烧推进中心力学与工程科学系和湍流国家重点实验室,北京
关键词: 连续爆轰连续爆轰发动机爆轰速度爆轰实验Continuous Detonation; Continuous Detonation Engine; The Velocity of Detonation; The Experiment on Detonation
摘要: 近年来,由于爆轰高效的燃烧方式,其已成为各国学者关注的焦点。而连续爆轰发动机只需一次点火,便能在燃烧室内形成连续传播的爆轰波,从而可以提供持续稳定高推力的优越性能使其成为航空推进的一个重要研究方向。本文基于北京大学燃烧推进动力中心的连续爆轰实验设备,利用H2/O2混合燃料,结合实验数据对连续爆轰发动机内部压力分布进行了实验研究,分析了连续爆轰形成、稳定和熄灭的过程,计算了实验中连续爆轰的速度和旋转周期,为进一步研究连续爆轰发动机内部机理奠定了基础。
Abstract: In recent years, detonation has become a hot topic of scientific research because of its high combustion efficiency. Continuous detonation engine will be able to form continuous propagation of detonation in the combustion chamber needing only once ignition, which can provide stable high thrust, and becomes an important research direction of aviation propulsion. Based on the continuous detonation experimental equipment of the Center of Combustion and Propulsion Power, Peking University, combined with the experimental data, internal pressure distribution of the continuous detonation engine is studied and the formation, stabilization and annihilation of the continuous detonation are analyzed. Also, the velocity and period of continuous detonation are calculated. All the works lay the foundation for further study of the internal mechanism of continuous detonation engine.
文章引用:李永生, 王健平, 石天一, 王宇辉, 刘宇思, 李洋. 连续爆轰发动机燃烧室内压力分布的实验研究[J]. 国际航空航天科学, 2013, 1(2): 7-12. http://dx.doi.org/10.12677/JAST.2013.12002

参考文献

[1] 姜宗林. 爆轰推进概念与机理研究–新型发动机研究的热点[J]. 世界科技研究与发展, 2007, 23(4): 25-26.
[2] 张宝伻, 张庆明, 黄风雷. 爆轰物理学[M]. 北京: 兵器工业出版社, 2001, 8: 88-89.
[3] D. L. Chapman. On the rate of explosions in gases. Philosophical Magazine, 1899, 47(284): 90-104.
[4] E. Jouguet. Macamique des Explosifs, Paris: Octave Doin et fils. 1917.
[5] Y. B. Zel’dovich. On the theory of the propagation of detonation in gaseous system. Journal of Experimental and Theoretical Physics, USSR, 10: 524.
[6] N. Hoffman. Reaction-propulsion produced by intermittent detonation combustion. ministry application. AIAA 2000-3473, 2000.
[7] F. K. Lu. Prospects for detonations in propulsion. proceedings of the 9th international symposium on experimental and computational aerothermodynamics of internal flows (ISAIF9). Paper No. IL-2, 2009.
[8] 严传俊, 范玮. 脉冲爆轰发动机原理及关键技术[M]. 西安: 西北工业大学出版社, 2005.
[9] 邵业涛, 王建平. 连续爆轰发动机的二维数值模拟研究[J]. 航空动力学报, 2009, 24(5): 980-987.
[10] B. V. Voitsekhoviskii. Stationary spin detonation. Soviet Journal of Applied Mechanics and Technical Physics, 1959, 129(6): 157- 164.
[11] F. A. Bykovskii, S. A. Zhdan and E. F. Vedernikov. Continuous spin detonations. Journal of Propulsion and Power, 2006, 22(6): 1204-1216.
[12] J. Kindracki, P. Wolanski, Z. Gut. (2011). Experimental research on the rotating detonation in gaseous fuels–oxygen mixtures. Shock Waves. 21:75–84.
[13] J. P. Wang, T. Y. Shi, Y. H. Wang, Y. S. Liu and Y. S. Li. Experimental research on continuous detonation engine. 23rd ICDERS, Irvine, 2011.
[14] Y. T. Shao, J. P. Wang. Change in continuous detonation wave propagation mode from rotating detonation to standing detona- tion. Chinese Physics Letters, 2010, 27(3): 034705.
[15] R. Zhou, J.-P. Wang. Numerical investigation of flow particle paths and thermodynamic performance of continuously rotating detonation engines. Combustion and Flame, 2012, 159: 3632- 3645.
[16] 王健平, 石天一, 王宇辉, 刘宇思. 连续爆轰发动机的实验研究[R]. 第十四届全国激波与激波管学术会议, 黄山, 2010: 181-184.
[17] J. Kindracki, P. Wolanski and Z. Gut. Expe-rimental research on the rotating detonation in gaseousfuels—oxygen mixtures. Shock Waves, 2011, 21: 75-84.
[18] M. Liu, J. P. Wang. Three dimensional simulation for the effects of fuelinjection patterns in rotating detonation engine. 23rd ICDERS, Irvine, 2011.