高离化态Mn离子的Kα谱线性质的理论研究
Theoretical Research on Kα X-Rays of Highly Ionized Manganese Ion
DOI: 10.12677/APP.2013.37026, PDF, HTML, 下载: 2,742  浏览: 7,643  国家自然科学基金支持
作者: 李会丽, 金国华, 周 丽:江西中医药大学,计算机学院,南昌
关键词: 高离化锰离子谱线性质 Highly Ionized; Mn Ion; Spectrum Properties
摘要: 基于相对论组态相互作用和多组态Dirac-Fock (MCDF)方法,我们系统地研究和讨论了Ka谱线类氦到类铍的跃迁能级,跃迁几率,吸收振子强度和线强度的性质。组态相互作用计算包括Breit相互作用,量子电动力学修正。我们的理论数据与可得到的实验数据(类氦和类锂)符合得很好,这些数据为等离子体锰离子的研究提供了有价值的信息。 By using relativistic configuration interaction (RCI) and multi-configuration Dirac-Fock (MCDF) method, we have calculated the transition energies, transition probabilities, absorption oscillator strengths and line strengths Kα X-ray from MnXVII through XXIV. Furthermore, configuration interaction includes Berit interaction and quantum elec- trodynamics (QED) corrections. Our calculated results are compared with the other available data on He-like and Li-like manganese and are in accord with them. The present wide range data are useful for studying manganese plasma.

 

文章引用:李会丽, 金国华, 周丽. 高离化态Mn离子的Kα谱线性质的理论研究[J]. 应用物理, 2013, 3(7): 134-140. http://dx.doi.org/10.12677/APP.2013.37026

参考文献

[1] V. A. Boiko, S. A. Pikuz, A. Y. Faenov and U. I. Safronova. Spe- ctra of be-like ions with nuclear charge Z = 22, 34 from laser- produced plas-mas. Journal of Physics B: Atomic, Molecular and Optical Physics, 1977, 10(7): 1253.
[2] P. Jonnard, G. Giorgi and C. Bonnelle. Ex-perimental and theo- retical k x-ray spectra of manganese. Physical Review A, 2002, 65(3): 0325071.
[3] I. Martinson. The spectroscopy of highly ionised atoms. Reports on Progress in Physics, 1989, 52(2): 157.
[4] D. C. Robert. The theory of atomic structure and spectra. Oakland, Regents of University of California Press, 1981.
[5] V. Decaux, P. Beiersdorfer, A. Osterheld, M. Chen and S. M. Kahn. High-resolution measurements of the k spectra of low- ionization species of iron: A new spectral signature of nonequi- librium ionization conditions in young supernova remants. As- trophysical Journal, 1995, 443: 464-468.
[6] K. G. Dyall, I. P. Grant, C. T. Johnson, F. A. Parpia and E. P. Plummer. GRASP: A general-purpose relativistic atomic struc- ture program. Computer Physics Communications, 1989, 55(3), 425-426.
[7] F. A. Parpia, C. F. Fisher and I. P. Grant. GRASP92: A package for large-scale relativistic atomic structure calculations. Com-puter Physics Communications, 1996, 94(2-3): 249-271.
[8] A. Stathopoulos, C. F. Fisher. A Davidson program for finding a few se-lected extreme eigenpairs of a large, sparse, real, symmetric matrix. Computer Physics Communications, 1994, 79(2): 268- 290.
[9] J. Olsen, M. R. Godefroid, P. Jonsson, P. Malmqvist and F. C. Froese. Transition probability calculations for atoms using nono- rthogonal orbitals. Physical Review E, 1995, 52(4): 4499-4508.
[10] L. Natara-jan. Relativistic configuration interaction calculations on the k x-ray satellites of argon. Journal of Physics B: Atomic, Molecular and Opti-cal Physics, 2003, 36(1): 105.
[11] A. Natarajan, L. Natarajan. k x-ray satellites of highly ionized iron. Journal of Physics B: Atomic, Molecular and Optical Phys- ics, 2004, 37(24): 4789-4801.
[12] Y. G. Mulye, L. Natarajan. Systematic studies on the inter-com- bination lines of he-like to O-like argon. Physica Scripta, 2004, 69(1): 24.
[13] T. Shirai, T. Nakagaki, K. Okazaki, J. Sugar and W. L. Wiese. Spectral data and Grotrian diagrams for highly ionized manga- nese. MnVII through Mn XXV. Journal of Physical and Chemical Reference Data, 1994, 23(2): 179
[14] TheNISTatomicspectracollection. http://physics.nist.gov/PhysRefData/ASD/line_from.html
[15] S. M. Younger, J. R. Fuhr, G. A. Martin and W. L. Wiese. Atomic transition probabilities for vanadium, chromium, and manganese. Journal of Physical and Chemical Reference Data, 1978, 7(2): 495.