校园湖水藻类多样性检测——以上海交通大学思源湖为例
Diversity Detection of Phytoplankton in Campus Lake—Taking Siyuan Lake of Shanghai Jiao Tong University for Instance
DOI: 10.12677/AEP.2013.34020, PDF, HTML, XML,  被引量 下载: 3,807  浏览: 12,694  科研立项经费支持
作者: 美合日古丽·米吉提:上海交通大学生命科学技术学院微生物代谢国家重点实验室海洋生物技术实验室,上海
关键词: 淡水藻微囊藻微囊藻毒素 Phytoplankton; Microcystis; Microcystin
摘要: 藻类是地球上最重要的初级生产者,它们对维持水环境的生态平衡起着重要作用。本研究对上海交通大学闵行校区内人工湖——思源湖水体检测发现,水样中共含有 25 种淡水藻,分属硅藻门、黄藻门、裸藻门、绿藻门、 蓝藻门、 金藻门 6 个门。 以编码微囊藻毒素合成酶基因 mcy 作为分子标记, 通过聚合酶链反应(Polymerase Chain Reaction, PCR)检测产毒微囊藻,从而检测水体中潜在的微囊藻毒素。研究结果显示:交大思源湖水体为轻中度污染,水体中发现微囊藻,但水体中的微囊藻未非产毒微囊藻。本研究为上海交大校园湖水的检测与治理提供依据。
Abstract: Fresh-water algae, also called phytoplankton, are a natural and essential part of the ecosystem, and also constitute the base of the aquatic food chain. The results of this survey showed that the water body of Siyuan Lake contains 25 species of phytoplankton which belongs to Diatoms, Yellow algae, Euglenophyta, Chlorophyta, Cyanophyta and Chrysophyta. In the study, by PCR method, the mcy gene that encodes microcystin synthetase was used as a molecular marker to detect the presence of microcystis producing microcystins and potential microcystin toxicity in Siyuan Lake. The experimental results showed that the water of Siyuan Lake was slight-medium polluted. However, microcysis in the water body didn’t produce microcystins. This study provides the basis not only for detection of aquatic pollution but also for treatment of polluted Siyuan Lake.
文章引用:美合日古丽·米吉提, 那依拉·木拉提, 张风丽. 校园湖水藻类多样性检测——以上海交通大学思源湖为例[J]. 环境保护前沿, 2013, 3(4): 115-121. http://dx.doi.org/10.12677/AEP.2013.34020

参考文献

[1] J. M. O’Neil, T. W. Davis, M. A. Burford, et al. The rise of harmful cyanobacteria blooms: The potential roles of eutrophication and climate change. Harmful Algae, 2012, 14: 313-334.
[2] V. H. Smith, D, W. Schindler. Eutrophication science: Where do we go from here? Trends in Ecology and Evolution, 2009, 24(4): 201-207.
[3] S. Kosten, V. L. M. Huszar, E. Bécares, et al. Warmer climates boost cyanobacterial dominance in shallow lakes. Global Change Biology, 2012, 18(1): 118-126.
[4] L. M. Rangel, L. H. S. Silva, P. Rosa, et al. Phytoplankton biomass is mainly controlled by hydrology and phosphorus concentrations in tropical hydroelectric reservoirs. Hydrobiologia, 2012, 693(1): 13-28.
[5] T. Kaneko, N. Nakajima, S. Okamoto, et al. Complete genomic structure of the bloom-forming toxic cyanobacterium Microcystis aeruginosa NIES-843. DNA Research, 2007, 14(6): 247-256.
[6] 姜锦林, 宋睿, 任静华等. 蓝藻水华衍生的微囊藻毒素污染及其对水生生物的生态毒理学研究[J]. 化学进展, 2011, 23(1): 247-253.
[7] S. H. Te, K. Y. H. Gin. The dynamics of cyanobacteria and microcystin production in a tropical reservoir of Singapore. Harmful Algae, 2011, 10(3): 319-329.
[8] A. Srivastava, G. G. Choi, C. Y. Ahn, et al. Dynamics of micro- cystin production and quantification of potentially toxigenic Mi- crocystis sp. using real-time PCR. Water Research, 2012, 46(3): 817-827.
[9] P. J. Oberholster, A. M. Botha and T. E. Cloete. Use of molecular markers as indicators for winter zooplankton grazing on toxic benthic cyanobacteria colonies in an urban Colorado lake. Harmful Algae, 2006, 5(6): 705-716.
[10] H. Sipari, A. Rantala-Ylinen, J. Jokela, et al. Development of a chip assay and quantitative PCR for detecting microcystin synthetase E gene expression. Applied and Environmental Mi- crobiology, 2010, 76(12): 3797-3805.
[11] M. C. Bittencourt-Oliveira, V. Piccin-Santos and S. Gouvêa- Barros. Microcystin-producing genotypes from cyanobacteria in Brazilian Reservoirs. Environmental Toxicology, 2010, 27(8): 461-471.
[12] S. López-Legentil, B. Song, M. Bosch, et al. Cyanobacterial diversity and a new acaryochloris-like symbiont from Bahamian sea-squirts. PLoS One, 2011, 6: e23938.
[13] T. Noguchi, A. Shinohara, A. Nishizawa, et al. Genetic analysis of the microcystin biosynthesis gene cluster in Microcystis strains from four bodies of eutrophic water in Japan. The Journal of General and Microbiology, 2009, 55(2): 111-123.
[14] 韩茂森. 淡水浮游生物图谱[M]. 北京: 农业出版社, 1980.
[15] S. Blanco, E. Bécares. Are biotic indices sensitive to river toxi- cants? A comparison of metrics based ondiatoms and macro-in- vertebrates. Chemosphere, 2010, 79(1): 18-25.
[16] S. S. Barinova, M. Tavassi and E. Nevo. Algal indicator system of environmental variables in the Hadera River basin, central Is- rael. Plant Biosystems, 2006, 140(1): 65-79.
[17] H. W. Pearl, J. Huissman. Blooms like it hot. Science, 2008, 320(5872): 57-58.