退火温度对MoS2纳米薄膜特性影响研究
The Influence of Annealing Temperature on the Properties of MoS2 Nanometer Thin Film
摘要: 本文主要采用化学气相沉积法,以MoS2饱和溶液为原料,利用氩气为输运气体,携带MoS2蒸汽进入反应室,在Si衬底上制备大面积均匀的MoS2超薄薄膜,并分析了不同的退火温度对于薄膜表面形貌、吸收特性以及电学特性的影响。研究发现,经过850退火的二硫化钼薄膜平整,厚度和晶粒尺寸也逐渐均匀。另外,随退火温度升高,MoS2超薄膜反射率降低,可显著提高器件光伏效应和光电转换效率,制备高效率的MoS2/Si异质结太阳能电池。退火还可以改善薄膜的电学特性,经过850退火的薄膜,其导电率达到了2.848 × 10−4,霍尔迁移率高达6.42 × 102 cm 2V−1s−1,可用于制造超低待机功率的场效应管。通过分析不同退火温度对纳米MoS2薄膜光电特性的影响,得出纳米MoS2薄膜的最佳退火温度为850℃,这促进了MoS2纳米电子器件的发展,推进了MoS2在光电子领域以及信息技术方面的广泛应用。
Abstract: Molybdenum disulfide (MoS2) thin films were deposited on Si substrates with MoS2 saturated solution as a raw material carried by argon (Ar) gas by means of chemical vapor deposition. We have analyzed the influence of different annealing temperatures on surface morphology of films, absorption characteristics and electrical properties. We found that MoS2 thin film annealled at 850˚C was characteristic of more smooth and symmetrical as compared to that of the unannealed sample. At the same time, the optical reflectivity apparently reduced, which indicated that annealing can effectively improve photovoltaic effect and photoelectric conversion efficiency, and can be used for fabricating solar cell. In addition, we found that the electrical properties of MoS2 thin films had also been enhanced after annealing. We noted that the conductivity and the carrier mobility were up to 2.848 × 10−4 and 6.42 × 102 cm 2V−1s−1, when annealing at 850˚C, which shows promising potential for low power field effect transistor. Analyzing the influence of different an- nealing temperatures on photoelectric properties of MoS2 nanometer thin films, we demonstrated that the best annealing temperature was 850˚C, which enhanced the applications of MoS2 in the field of photoelectron and information techno- logy.
文章引用:林拉, 陈康烨, 何杰, 张国瑞, 顾伟霞, 马锡英. 退火温度对MoS2纳米薄膜特性影响研究[J]. 纳米技术, 2013, 3(3): 35-39. http://dx.doi.org/10.12677/NAT.2013.33005

参考文献

[1] Y. Yoon, K. Ganapathi and S. Salahuddin. How good can mo- nolayer MoS2 transistors be? Nano Letters, 2011, 11: 3768-3773.
[2] B. K. Prasad, S. Rathod, M. S. Yadav, et al. Sliding wear behavior of cast iron: Influence of MoS2 and graphite addition to the oil lubricant. Journal of Materials Engineering and Performance, 2011, 20: 445-455.
[3] J. N. Coleman, M. Lotya, A. O’Neill, et al. Two-dimensional nanosheets produced by liquid exfoliation of layered materials. Science, 2011, 331: 568-571.
[4] 汤国虎. 纳米二硫化钼的合成与应用现状[J]. 无机盐工业, 2009, 6: 89-93.
[5] B. Radisavljevic, A. Radenovic, J. Brivio, et al. Single-layer MoS2 transistors. Nature Nanotech, 2011, 6: 147-150.
[6] G. Eda, H. Yamaguchi, D. Voiry, et al. Correction to photoluminescence from chemically exfoliated MoS2. Nano Letters, 2012, 12(1): 526-526.
[7] G. Eda, H. Yamaguchi, D. Voiry, et al. Photoluminescence from chemically exfoliated MoS2. Nano Letters, 2011, 11(12): 5111- 5116.
[8] E. Gourmelon, O. Lignier, H. Hadouda, et al. MS2 (M=W,Mo) photosensitive thin films for solar cells. Solar Energy Materials and Solar Cells, 1997, 46: 115-121.
[9] S. Alkis, T. Öztaş, L. E. Aygün, et al. Thin film MoS2 nano- crystal based ultraviolet photodetector. Optics Express, 2012, 20(19): 21815-21820.
[10] 王泉山, 兰新哲, 周军, 宋永辉, 邢相栋. 液相化学法合成纳米二硫化钼研究进展[J]. 广东化工, 2007, 9: 32-35.