长井段保形连续取心在春晖油田优质储层预测中的应用
Long Well Segment Sealed Freezing Shape Preserving Continuous Coring for Quality Reservoir Prediction in Chunhui Oilfield
摘要: 准噶尔盆地北缘春晖油田属于勘探新区,为薄浅层超稠油地层型油藏,直井或水平井蒸汽吞吐只获得低产油流。为落实储量规模和单井产能,以储层描述和流体预测为攻关重点,哈浅1-1井成功进行了长井段密闭冷冻保形连续取心。通过对岩心的岩性、物性和含油性等特征的描述,为分析油藏特征和确定开发模式提供了重要的技术参数,同时发现储层为泥质胶结含砾砂岩,发育多条薄灰质夹层,含油性随砾石含量增大而变差,砂组砾、砂、泥交互厚度33 m,富含油5.5 m,油浸10.8 m,相应的4个含油层段为相对优质储层。本文的研究成果为最终蒸汽辅助重力泄油开发方案制定提供了有效依据,对薄浅层超稠油开发具有重要生产意义。<br/>Chunhui Oilfield belongs to new exploration area in the Northern Edge of Junggar Basin, and is stratigraphic oil reservoir with thin-shallow super heavy oil. Both vertical well and horizontal well only with steam stimulation most have low producing. For implementing reserve scale and single well production, taking reservoir description and fluid prediction as resolution of key technology, Haqian 1-1 well has successful long well segment shape of preserving continuous coring with sealed freezing. By core description on lithology, physical properties, and oiliness, it provides important technical parameter for analysis of reservoir characteristic and determining development mode, at the same time, it finds that its reservoir is shale cementation pebbled sandstone; multistrip thin gray dissection is developed; oiliness becomes poor with the increasing of gravel content; the interaction thickness of gravel, sand and gray in I sand group is 33 m; the rich oil thickness is 5.5 m; the immersion thickness is 10.8 m; and corresponding four oil-bearing segments are the relatively high-quality reservoir. The result provides effective proof for finally making steam-assisted gravity drainage development project, and it has important significance in the production for development of thin-shallow super heavy oil.
文章引用:王学忠, 刘传虎. 长井段保形连续取心在春晖油田优质储层预测中的应用[J]. 地球科学前沿, 2013, 3(6): 361-369. http://dx.doi.org/10.12677/AG.2013.36048

参考文献

[1] 张善文 (2013) 准噶尔盆地哈拉阿拉特山地区风城组烃源岩的发现及石油地质意义. 石油与天然气地质, 2, 145-152.
[2] 刘传虎, 王学忠, 席伟军 (2012) 准北春晖油田油气勘探快速突破的三点启示. 地球科学前沿, 1, 24-30.
[3] Litt, T., Krastel, S. and Sturm, M. (2009) “PALEOVAN”, Inter- national Continental Scientific Drilling Program (ICDP): Site survey results and perspectives. Quaternary Science Reviews, 28, 15-16.
[4] Debret, M., Chapron, E. and Desmet, M. (2010) North western Alps Holocene paleohydrology recorded by flooding activity in Lake Le Bourget, France. Quaternary Science Reviews, 29, 17- 18.
[5] Yang, Z., Clement, B.M. and Acton, G.D. (2001) Records of the Cobb Mountain Subchron from the Bermuda Rise (ODP LEG 172). Earth and Planetary Science Letters, 193, 3-4.
[6] Guyard, H., St-Onge, G. and Pienitz, R. (2011) New insights into Late Pleistocene glacial and postglacial history of northernmost Ungava (Canada) from Pingualuit Crater Lake sediments. Qua- ternary Science Reviews, 30, 27-28.
[7] 李忠江, 杜庆龙, 齐春艳等 (2005) 利用密闭取心井确定薄差油层水淹识别方法研究. 石油天然气学报, S5, 747-748.
[8] 李士奎, 朱焱, 赵永胜等 (2005) 大庆油田三元复合驱试验效果评价研究. 石油学报, 3, 56-59.
[9] 申本科, 胡永乐, 田昌炳等 (2005) 陆相砂砾岩油藏裂缝发育特征分析——以克拉玛依油田八区乌尔禾组油藏为例. 石油勘探与开发, 3, 41-44.
[10] 高建, 马德胜, 杨思玉 (2012) 低渗透砂岩油藏单砂体内部相对高渗透段定量识别. 中国石油大学学报(自然科学版), 6, 13-18.
[11] 狄帮让, 裴正林, 夏吉庄等 (2009) 薄互层油藏模型黏弹性波方程正演模拟研究. 石油地球物理勘探, 5, 622-629.
[12] 杨雪, 潘保芝, 张晓明等 (2010) 低孔低渗砂岩储层含水饱和度模型建立及在松南地区的应用. 石油地球物理勘探, S1, 206-209.
[13] 张冲, 毛志强, 孙中春等 (2010) 玛河气田盐水泥浆侵入条件下双侧向测井电阻率校正方法. 石油地球物理勘探, 5, 757-761.
[14] 张丽华, 潘保芝, 李舟波等 (2010) 新三水导电模型及其在低孔低渗储层评价中的应用. 石油地球物理勘探, 3, 431-435.
[15] 王学忠, 王金铸, 乔明全 (2013) 水平井、氮气及降黏剂辅助蒸汽吞吐技术——以准噶尔盆地春风油田浅薄层超稠油为例. 石油勘探与开发, 1, 97-102.
[16] 付金华, 石玉江 (2002) 利用核磁测井精细评价低渗透砂岩气层. 天然气工业, 6, 39-42.
[17] 袁祖贵 (2008) 核磁共振测井与核磁共振录井对比分析. 原子能科学技术, 7, 581-585.
[18] 任芳祥, 周鹰, 孙洪安等 (2011) 深层巨厚稠油油藏立体井网蒸汽驱机理初探. 特种油气藏, 6, 61-65.