|
[1]
|
Newman, M.E.J. (2000) Models of the small world. Journal of Statistical Physics, 101, 819-941.
|
|
[2]
|
Albert, R. and Barabási, A.-L. (2002) Statistical mechanics of complex networks. Reviews of Modern Physics, 74, 47-97.
|
|
[3]
|
Newman, M.E.J. (2003) The structure and function of complex networks. SIAM Review, 45, 167-256.
|
|
[4]
|
Yu, S., Huang, D., Singer, W. and Nikolic, D. (2008) A small world of neuronal synchrony. Cerebral Cortex, 18, 2891-2901.
|
|
[5]
|
Chung, F. and Lu, L. (2002) The average distances in random graphs with given expected degrees. Proceedings of the National Academy of Sciences of USA, 99, 15879-15882.
|
|
[6]
|
Cohen, R. and Havlin, S. (2003) Scale-free networks are ultrasmall. Physical Review Letters, 90, Article ID: 058701.
|
|
[7]
|
Dorogovtsev, S.N., Mendes, J.F.F. and Oliveira, J.G. (2006) Degree-dependent intervertex separation in complex networks. Physical Review E, 73, Article ID: 056122.
|
|
[8]
|
Watts, D.J. and Strogatz, S.H. (1998) Collective dynamics of “small-world” networks. Nature, 393, 440-442.
|
|
[9]
|
Condamin, S., Benichou, O., Tejedor, V., Voituriez, R. and Klafter, J. (2007) First-passage times in complex scale-invariant media. Nature, 450, 77-80.
|
|
[10]
|
Nishikawa, T., Motter, A.E., Lai, Y.-C. and Hoppensteadt, F.C. (2003) Heterogeneity in oscillator networks: Are smaller worlds easier to synchronize? Physical Review Letters, 91, Article ID: 014101.
|
|
[11]
|
Dorogovtsev, S.N., Mendes, J.F.F. and Samukhin, A.N. (2003) Metric structure of random networks. Nuclear Physics, 653, 307-338.
|
|
[12]
|
Lovejoy, W.S. and Loch, C.H. (2003) Minimal and maximal characteristic path lengths in connected sociomatrices. Social Networks, 25, 333347.
|
|
[13]
|
Fronczak, A., Fronczak, P. and Holyst, J.A. (2004) Average path length in random networks. Physical Review E, 70, Article ID: 056110.
|
|
[14]
|
Holyst, J.A., Sienkiewicz, J., Fronczak, A., Fronczak, P. and Suchecki, K. (2005) Universal scaling of distances in complex networks. Physical Review E, 72, Article ID: 026108.
|
|
[15]
|
Fekete, A.,Vattay, G. and Posfai, M. (2009) Shortest path discovery of complex networks. Physical Review E, 79, Article ID: 065101.
|
|
[16]
|
Smythe, R.T. and Mahmoud, H. (1995) A survey of recursive trees. Theorya Imovirnosty ta Matemika Statystika, 51, 1-27.
|
|
[17]
|
章忠志, 周水庚, 方锦清 (2008) 复杂网络确定性模型研究的最新进展. 复杂系统与复杂性科学, 4, 29-46.
|
|
[18]
|
Jung, S., Kim, S. and Kahng, B. (2002) A geometric fractal growth model scale free networks. Physical Review E, 65, Article ID: 056101.
|
|
[19]
|
Zhang, Z.Z., Zhou, S.G., Qi, Y. and Guan, J.H. (2008) Topologies and Laplacian spectra of a deterministic uniform recursive tree. European Physical Journal B, 63, 507-513.
|
|
[20]
|
Lu, Z.M. and Guo, S.Z. (2012) A small-world network derived from the deterministic uniform recursive tree. Physica A, 391, 87-92.
|