The Effect of Zn2+ Substitution on Magnetic Properties of Z-Type Hexaferrite Sr3Co2Fe24O41
DOI: 10.12677/APP.2014.43003, PDF, HTML, 下载: 2,611  浏览: 7,752  国家自然科学基金支持
作者: 姜 晨, 汤如俊, 杨 浩:苏州大学物理、光电与能源学部,苏州
关键词: Z型六角铁氧体Zn2+掺杂温度磁性质Z-Type Hexaferrite Zn2+ Doped Temperature Magnetic Property
本文采用固相反应法制备了Z型六角铁氧体Sr3Co2-xZnxFe24O41(x = 0~1.6)材料,研究了不同Zn2+含量和不同温度下Sr3Co2-xZnxFe24O41的磁学性能。结果表明,不同Zn2+掺杂量的粉末样品颗粒都是层状生长,样品颗粒为类六角形状。不同Zn2+掺杂量的样品在不同温度时,都具有明显的软磁特征。随着Zn2+掺杂量x值的增加,样品的饱和磁化强度总体有先增大再减小的趋势,x = 1.2时,饱和磁化强度达到最大。在不同温度下,饱和磁化强度随组分变化有相似的变化规律。样品的矫顽力随组分变化而变化,但是没有明显的变化规律。当x = 01.2时,样品具有相对较低的矫顽力。当x < 1.2时,升高温度导致矫顽力降低。当x > 1.2时,温度对样品的矫顽力的影响变的很小。综上所述,当x值为1.2时,Sr3Co2-xZnxFe24O41的饱和磁化强度最大,矫顽力相对最小,软磁性能最好
Zn2+ doped Z-type hexaferrites Sr3Co2-xZnxFe24O41 (x = 0 - 1.6) were prepared with the conventional solid state reaction method. The magnetic properties of Sr3Co2-xZnxFe24O41 with different Zn2+ content at different temperatures were investigated. Results show that the particles of powder samples with different Zn2+ content are layered growth and have a similar hexagonal shape. Samples with different Zn2+ content at different temperatures show soft magnetic properties. The saturation magnetization increases firstly and then decreases with the increase in Zn2+ content. The maximum saturation magnetization is obtained at x = 1.2. The variation of saturation magnetization with composition at different temperatures is similar. The coercive fields vary with composition. However, no distinct variation trend is observed. The samples have the relative low coercive fields when x is 0 and 1.2. When x < 1.2, the coercive field decreases when the temperature is increased. When x > 1.2, the influence of temperature on the coercive fields is negligible. The above results show that, when the value of x is 1.2, the Zn2+ doped Z-type hexaferrite has both the largest saturation magnetization and the relatively small coercive field, and as a result, the best soft magnetic property.
文章引用:姜晨, 汤如俊, 杨浩. Zn2+掺杂Sr3Co2Fe24O41六角铁氧体的磁性质研究 [J]. 应用物理, 2014, 4(3): 17-23. http://dx.doi.org/10.12677/APP.2014.43003


[1] Zhang, H.G. and Member, S. (2002) Microstructure and magnetic characteristics of low-temperature-fired modified Z-type hexaferrite with Bi2O3 additive. IEEE Transactions on Magnetics, 38, 1797-1802.
[2] 贾立军, 张怀武, 刘颖力, 钟智勇, 石玉 (2006) Nb2O5掺杂Co2Z六角铁氧体的烧结行为和电磁特性. 硅酸盐学报, 34, 398-402.
[3] 燕小斌, 高峰 (2006) Co2Z高频软磁铁氧体材料的研究进展. 材料导报, 20, 29-32.
[4] Zhang, H.G., Li, L.T. and Zhou, J.(2001)Microstructure Characteristic and Properties of chemically synthesized Co2Z hexaferrite. Journal of European Ceramic Society, 21, 149-153.
[5] 白洋, 徐芳 (2008) 低温烧结Co2Z物理性能研究. 压电与声光, 30, 335-336.
[6] 李荫远, 李国栋 (1978) 铁氧体物理学. 科学出版社, 北京.
[7] Kimura, O., Matsumoto, M. and Sakakura, M. (1995) Enhanced dispersion of frequency of hot-pressed Z-type Magne- toplumbite ferrite with the composition 2CoO•3Ba0.5Sr0.5O•10.8Fe2O3.Communications of the American Ceramic Society, 78, 2857-2860.
[8] Takada, Y., Nakagawa, T., Tokunaga, M., Tachibana, T. and Igawa, N. (2006) Crystal and magnetic structures and their temperature dependence of Co2Z-type hexaferrite (Ba,Sr)3Co2Fe24O41 by high-temperature neutron diffraction. Journal of Applied Physics, 100, 1-7.
[9] Bai, Y., Xu, F., Qiao, L.J. and Zhou, J. (2009) High frequency magnetic mechanism of Ni-substituted Co2Z hexagonal ferrite. Materials Research Bulletin, 44, 898-900.
[10] Mu, C.H., Liu, Y.L. and Song, Y.Q (2011) Improvement of high-frequency characteristics of Z-type hexaferrite by dysprosium doping. Journal of Applied Physics, 109, 1-5.
[11] Wang, X.H., Li, L.T., Su, S.Y. and Yue, Z.X. (2004) Electromagnetic properties of low-temperature-sintered Ba3Co2-xZnxFe24O41 ferrites prepared by solid state reaction method. Journal of Magnetism and Magnetic Materials, 280, 10-13.
[12] Wang, X.H., Li, L.T. and Yue, Z.X (2002) Preparation and magnetic characterization of the ferroxplana ferrites Ba3Co2-xZnxFe24O41. Journal of Magnetism and Magnetic Materials, 246, 434-439.
[13] 李茹民, 鲁玉立, 赵莹莹 (2009) 锌掺杂Sr3Co2Fe24O41 Z型六角铁氧体及其性能. 功能材料与器件学报, 15, 569-574.
[14] Kitagawa, Y., Hiraoka, Y., Honda, T., Ishikura, T., Nakamura, H. and Kimura, T. (2010) Low-field magnetoelectric effect at room temperature. Nature Materials, 9, 797-802.
[15] Zhang, X., Zhao, Y.G., Cui, Y.F., Ye, L.D. and Wang, J.W. (2012) Magnetodielectric effect in Z-type hexaferrite. Ap- plied Physics Letters, 100, 1-3.
[16] Wang, X.H., Li, L.T., Su, S.Y. and Gui, Z.L. (2005) Novel ferromagnetic material for fabricating multilayer chip in- ductors low-temperature-sintered Ba3Co2-xZnxFe24O41 hexaferites. Communications of the American Ceramic Society, 88, 478-480.