计算机科学与应用  >> Vol. 4 No. 5 (May 2014)

指纹图像的旋转校正与分类
Rotation Correction and Classification of Fingerprint Image

DOI: 10.12677/CSA.2014.45014, PDF, HTML, 下载: 2,737  浏览: 5,761 

作者: 尹婉琳:东南大学自动化学院,南京;叶 桦, 仰燕兰:东南大学自动化学院,南京;东南大学复杂工程系统测量与控制教育部重点实验室,南京

关键词: 指纹识别指纹分类旋转校正中心点Fingerprint Identification Fingerprint Classification Rotation Correction Core

摘要: 为了提高在大容量指纹数据库中指纹识别率的速度和正确率,也为了提取出更多的细节特征,提出了一种旋正图像并使用中心点特征进行指纹分类的方法。首先,根据指纹图像的最小外接椭圆和矩形,获得旋转角度并对指纹进行仿射变换以校正图像;然后,针对现有Poincare index方法存在伪点的问题,通过对其改进实现中心点的确定,并总结人眼识别的经验对采集到的中心点去噪;最后,利用中心点的绝对方向角度、螺径等细节特征对指纹进行分类。对于无法分类或分类不正确的图像,采取二次匹配保证正确率。在从电容式指纹传感器FPC1011F采集到的400幅图像上,分类的准确率为91.25%,实验结果验证了该方法的有效性和鲁棒性。
Abstract: In order not only to improve the speed and accuracy of fingerprint recognition in the large-capacity database, but also to extract more detailed features, this paper presents a classification algorithm by using the features of cores, which are extracted from a corrected fingerprint. In the first phase, according to the smallest external ellipse and rectangle, the declining fingerprint is corrected by the affine transformation. In the second phase, to heighten anti-noise capability of traditional Poincare index, an improved algorithm is proposed, and then false points are denoised by summarizing the human recognition experience. Finally, the absolute direction, the diameter of screw and other features are the basis for fingerprint classification. 400 fingerprint images collected by FPC1011F fingerprint sensor are used for an experimental test, and the accuracy rate on classification is 91.25%. The experimental results show its effectiveness and robustness.

文章引用: 尹婉琳, 叶桦, 仰燕兰. 指纹图像的旋转校正与分类[J]. 计算机科学与应用, 2014, 4(5): 85-94. http://dx.doi.org/10.12677/CSA.2014.45014

参考文献

[1] 刘通 (2001) 自动指纹分类算法研究. 清华大学, 北京.
[2] Karu, K. and Jain, A.K. (1996) Fingerprint classification. Pattern Recognition, 29, 389-404.
[3] 杨利敏, 杨杰, 等 (2003) 基于指纹分类的模式匹配. 电子学报, 7, 1031-1033.
[4] 耿国光, 殷建平, 等 (2014) 使用局部纹线距离进行指纹分类. 计算机科学与探索, 1, 74-76.
[5] 杨小冬, 宁新宝, 等 (2005) 基于纹线跟踪的指纹分类方法. 计算机工程, 7, 170-173.
[6] 张祖泷, 杨永明, 等 (2012) 指纹奇异点精确定位新方法. 计算机工程与应用, 32, 203-206.
[7] 翁大伟, 尹义龙, 等 (2008) 基于Gaussian-Hermite矩和改进的PoincareIndex的指纹奇异点提取. 计算机研究与发展, 11, 1975-1977.
[8] 梅园, 孙怀江, 等 (2008) 一种有效的指纹奇异点提取方法. 计算机工程与应用, 28, 1-3.
[9] Cao, K., Yang, X., Tao, X., Li, P., Zhang, Y. and Tian, J. (2010) Combining features for distorted fingerprint matching. Journal of Network and Computer Applications, 33, 258-267.
[10] 李双梅 (2007) 指纹自动分类技术的研究与实现. 南京理工大学计算机科学与技术学院, 南京.
[11] Bradski, G. and Kaebler, A. (2009) 学习OpenCV. 清华大学出版社, 北京.
[12] 陈晖 (2011) 结合方向场特征的扭曲指纹图像识别技术研究. 国防科学技术大学计算机科学与技术学院, 长沙.