太赫兹光子带隙光纤的设计及传输特性模拟
Design and Propagation Properties Study on Terahertz Photonic Bandgap Fiber
DOI: 10.12677/APP.2014.45009, PDF, HTML, 下载: 3,029  浏览: 9,452  国家自然科学基金支持
作者: 王豆豆, 张 涛:西安科技大学理学院,西安
关键词: 太赫兹光子晶体光纤有限元方法Topas环烯烃共聚物Terahertz Photonic Crystal Fiber Finite Element Method Topas Cyclic Olefin Copolymer
摘要: 以新型太赫兹低损耗材料Topas环烯烃共聚物为基质,设计了一种基于带隙效应传输太赫兹波的空气芯聚合物光子晶体光纤。应用有限元方法对光纤的传输特性进行了分析。结果表明,该光纤在1.47 THz附近具有宽度约为0.2 THz的连续低损耗传输带宽,可以很好地将太赫兹波限制在空气芯中传输。在1.51 THz处获得了0.13 cm−1最小总损耗值。所设计的太赫兹Topas光子带隙光纤具备结构简单、易制备、直径小而易弯曲的特点。
Abstract: An air core photonic bandgap fiber is designed based on the novel Terahertz low-loss material Topas cyclic olefin copolymer. Propagation properties in the terahertz band of the fiber are investigated by using the finite element method. Numerical results indicate that the fiber has a low loss photonic bandgap within a broadband area about 0.2 THz around 1.47 THz, and THz wave is welled confined in the air core. Loss reaches the minimum value of 0.13 cm−1 at 1.51 THz. Struc- ture of designed terahertz Topas photonic bandgap fiber is simple, feasible for fabrication and bendable because of the relatively small diameter.
文章引用:王豆豆, 张涛. 太赫兹光子带隙光纤的设计及传输特性模拟[J]. 应用物理, 2014, 4(5): 61-67. http://dx.doi.org/10.12677/APP.2014.45009

参考文献

[1] 许景周, 张希成 (2007) 太赫兹科学技术和应用. 北京大学出版社, 北京.
[2] 张希成 (2003) 太赫兹科学与技术研究回顾. 物理, 5, 286-293.
[3] 黄婉文, 李宝军 (2006) 太赫兹波导器件研究进展. 激光与光电子学进展, 7, 9-16.
[4] 钟任斌, 周俊, 刘盛纲 (2012) 太赫兹波导的研究进展. 电子科技大学学报, 2, 247-252.
[5] Lu, J.Y., Yu, C.P., Chang, H.C. and Chen, H.W. (2008) Terahertz air-core microstructure fiber. Applied Physics Letter, 92, 064105-1-064105-3.
[6] Nielsen, K., Rasmussen, H.K., Adam, A.J.L. and Planken, P.C.M. (2009) Bendable low-loss Topas fibers for the tera- hertz frequency range. Optics Express, 17, 8592-8601.
[7] Khanarian, G. (2001) Optical properties of cyclic olefin copolymers. Optics Engineering, 40, 1024-1029.
[8] 江源, 邹宁宇 (2002) 聚合物光纤. 化学工业出版社, 北京, 62-68.
[9] Kong, D.P. and Wang, L.L. (2009) Ultrahigh-resolution fiber-optic image guides derived from Microstructured poly- mer optical fiber performs. Optics Letters, 34, 2435-2437.
[10] Saitoh, K. and Koshiba, M. (2003) Leakage loss and group velocity dispersion in air-core photonic bandgap fibers. Optics Express, 11, 3100-3109.
[11] Ung, B., Mazhorova, A. and Dupuis, A. (2011) Polymer microstructured optical fibers for terahertz wave guiding. Optics Express, 19, B848-B861.
[12] Nielsen, K., Rasmussen, H.K. and Jepsen, P.U. (2010) Broadband terahertz fiber directional coupler. Optics Letters, 35, 2879-2881.