植物对土壤中镉毒害的响应研究进展
The Current Research Progresson the Plant Response toCadmium Enriched in Soil
DOI: 10.12677/BR.2014.33016, PDF, HTML,  被引量 下载: 3,119  浏览: 14,286  国家科技经费支持
作者: 陈琪, 郭晓瑞:东北林业大学森林植物生态学教育部重点实验室,哈尔滨
关键词: 镉污染耐受性生物修复研究进展Cadmium Pollution Tolerance Bioremediation Research Progress
摘要: 在我国的重金属土壤污染中,镉(Cd)污染是危害性最大的,因此有关植物对镉胁迫的耐受性机制一直是人们研究的热点,其中多数研究主要是针对单一Cd胁迫进行的,但是在自然环境下Cd通常与铜(Cu)、锌(Zn)等其它重金属共同富集在土壤中,给重金属污染修复带来很大困难。本文主要从Cd污染的危害、植物自身抗性及Cd与其它金属元素的相互作用等方面做出了简要综述,对重金属土壤污染的研究提出了发展和展望。
Abstract: The heavy metal cadmium (Cd) enriched in soil is one of the most harmful pollution issues in the whole world. The most of the research related to plant response to Cd stress mainly focus on Cd stress alone, ignoring the question that multiple kinds of heavy metals including Copper (Cu), Zinc (Zn) frequently combined with Cd in soil in the natural environment. It has brought great difficulties in governance. Here, we combine the recent research reports from the aspect of Cd harm, the resistance of plant and the interaction with other metal elements under Cd stress to make a brief summary. Then, the development and prospect in heavy metal contamination of soil research were proposed.

文章引用:陈琪, 郭晓瑞. 植物对土壤中镉毒害的响应研究进展[J]. 植物学研究, 2014, 3(3): 111-116. http://dx.doi.org/10.12677/BR.2014.33016

参考文献

[1] Cuypers, A., Karen, S., Jos, R., Kelly, O., Els, K., Tony, R., Nele, H., Nathalie, V., Suzy, V.S. and Frank, V.B. (2011) The cellular redox state as a modulator in cadmium and copper responses in Arabidopsis thaliana seedlings. Journal of Plant Physiology, 168, 309-316.
[2] 苏德纯, 黄焕忠 (2002) 油菜作为超累积植物修复镉污染土壤的潜力. 中国环境科学, 1, 48-51.
[3] 马学文, 翁焕新, 章金骏 (2011) 中国城市污泥重金属和养分的区域特性及变化. 中国环境科学, 8, 1306-1313.
[4] Li, T., Yang, X., Lu, L., Islam, E. and He, Z. (2009) Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. Journal of Hazardous Materials, 169, 734-741.
[5] Masood, A., Iqbal, N. and Khan, N.A. (2012) Role of ethylene in alleviation of cadmium-induced photosynthetic capacity inhibition by sulphur in mustard. Plant, Cell & Environment, 35, 524-533.
[6] Abboud, P. and Wilkinson, K.J. (2013) Role of metal mixtures (Ca, Cu and Pb) on Cd bioaccumulation and phytochelatin production by Chlamydomonas reinhardtii. Environmental Pollution, 179, 33-38.
[7] Li, T., Yang, X., Lu, L., Islam, E. and He, Z. (2009) Effects of zinc and cadmium interactions on root morphology and metal translocation in a hyperaccumulating species under hydroponic conditions. Journal of Hazardous Materials, 169, 734-741.
[8] Matusik, J., Bajda, T. and Manecki, M. (2008) Immobilization of aqueous cadmium by addition of phosphates. Journal of Hazardous Materials, 152, 1332-1339
[9] Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., Chaïbi, W. and Djebali. W. (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum. Ecotoxicology and Environmental Safety, 73, 1004-1011.
[10] Scebba, F., Arduini, I., Ercoli, L. and Sebastiani, L. (2006) Cadmium effects on growth and antioxidant enzymes activities in miscanthus sinensis. Biologia Plantarum, 50, 688-692.
[11] Belkhadi, A., Hediji, H., Abbes, Z., Nouairi, I., Barhoumi, Z., Zarrouk, M., Chaïbi, W. and Djebali, W. (2010) Effects of exogenous salicylic acid pre-treatment on cadmium toxicity and leaf lipid content in Linum usitatissimum. Ecotoxicology and Environmental Safety, 73, 1004-1011.
[12] Liu, C., Guo, J., Cui, Y., Lü, T., Zhang, X. and Shi, G. (2011) Effects of Cadmium and Salicylic Acid on Growth, Spectral Reflectance and Photosynthesis of Castor Bean Seedlings. Plant and Soil, 344, 131-141.
[13] Son, Y.-O., Lee, J.-C., Hitron, J.A., Pan, J., Zhang, Z. and Shi, X. (2010) Cadmium induces intracellular Ca2+-and H2O2-dependent apoptosis through Jnk-and P53-mediated pathways in skin epidermal cell line. Toxicological Sciences, 113, 127-137.
[14] Kabała, K., Janicka-Russak, M. and Kłobus, G. (2010) Different responses of tonoplast proton pumps in cucumber roots to cadmium and copper. Journal of Plant Physiology, 167, 1328-1335.
[15] Vangronsveld, J. and Clijsters, H. (1994) Toxic Effects of Metals. In: Farago, M.E., Ed., Plants and the chemical elements, VCH Publishers, New York, VCH Verlagsgesellschaft, Weinheim, 149-177.
[16] Moya, J., Ros, R, and Picazo, I. (1993) Influence of cadmium and nickel on growth, net photosynthesis and carbohydrate distribution in rice plants. Photosynthesis Research, 36, 75-80.
[17] Niu, Z.-X., Sun, L.-N., Sun, T.-H., Li, Y.-S. and Wang, H. (2007) Evaluation of phytoextracting cadmium and lead by sunflower, ricinus, alfalfa and mustard in hydroponic culture. Journal of Environmental Sciences, 19, 961-967.
[18] Sanita di Toppi, L. and Gabbrielli, R. (1999) Response to cadmium in higher plants. Environmental and Experimental Botany, 41, 105-130.
[19] Nies, D.H. and Silver, S. (1989) Plasmid-determined inducible efflux is responsible for resistance to cadmium, zinc, and cobalt in Alcaligenes eutrophus. Journal of Bacteriology, 171, 896-900.
[20] Castiglione, S., Franchin, C., Fossati, T., Lingua, G., Torrigiani, P. and Biondi, S. (2007) High zinc concentrations reduce rooting capacity and alter metallothionein gene expression in white poplar (Populus AlbL. Cv. Villafranca). Chemosphere, 67, 1117-1126.
[21] Miller, H.R. (1996) Mucosal mast cells and the allergic response against nematode parasites. Veterinary Immunology and Immunopathology, 54, 331-336
[22] 张玉秀, 柴团耀, Burkard, G. (199) 植物耐重金属机理研究进展. 植物学报, 5, 453-457.
[23] Dahmani-Muller, H., Van Oort, F., Gelie, B. and Balabane, M. (2000) Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 109, 231-238.
[24] Cobbett, C. and Goldsbrough, P. (2002) Phytochelatins and metallothioneins: Roles in heavy metal detoxification and homeostasis. Annual Review of Plant Biology, 53, 159-182.
[25] Dietz, K.-J., Baier, M. and Krämer, U. (1999) Free radicals and reactive oxygen species as mediators of heavy metal toxicity in plants. In: Heavy Metal Stress in Plants, Springer, 73-97.
[26] Bezel, V., Zhuikova, T. and Pozolotina, V. (1998) The structure of dandelion cenopopulations and specific features of heavy metal accumulation. Russian Journal of Ecology, 29, 331-337.
[27] Hu, P.J., Qiu, R.L., Senthikumar, P., et al. (2009) Tolerance, Accumulation and Distribution of Zinc and Cadmium in Hyperaccumulators Potendlla. Environmental and Experimental Botany, 66, 317-325.
[28] Isaure, M.P., Fayard, B., Sarret, G., et al. (2006) Localization and chemical forms of cadmium in plant samples by combining analytical electron microscopy and X-ray spec-tromicroscopy. Spectrochimica Acta Part B: Atomic Spectroscopy, 61, 1242-1252.
[29] Küpper, H., Mijovilovich, A., Meyer-Klaucke, W. and Kroneck, P.M. (2004) Tissue-and age-dependent differences in the complexation of cadmium and zinc in the cadmium/zinc hyperaccumulator Thlaspi caerulescens (ganges ecotype) revealed by x-ray absorption spectroscopy. Plant Physiology, 134, 748-757.
[30] Grlspen, V.M.J., Irlelli, B., Hakvoort, H.W.J., et al. (2009) Expression of the arabidopsis metallothionein 2b enhance sarsenite sensitivity and root to shoot translocation in tobacco. Environmental and Experimental Botany, 66, 69-73.
[31] Noctor, G., Aris, A.C., Jouanin, L., Kunert, K.J.H. and Foyer, C.H. (1998a). Glutathione: Biosynthesis, metabolism and relationship to stress tolerance explored in transformed plants. Journal of Experimental Botany, 49, 623-647.
[32] 金勇, 付庆灵, 郑进, 康薇, 刘永红, 胡红青 (2012) 超积累植物修复铜污染土壤的研究现状. 中国农业科技导报, 4, 93-100.
[33] Kärenlampi, S., Schat, H., Vangronsveld, J., Verkleij, J., van der Lelie, D., Mergeay, M. and Tervahauta, A. (2000) Genetic engineering in the improvement of plants for phytoremediation of metal polluted soils. Environmental Pollution, 107, 225-231.
[34] 丁疆华, 舒强 (2001) 土壤环境中镉, 锌形态转化的探讨. 城市环境与城市生态, 2, 47-49.
[35] 华珞, 陈世宝, 白玲玉, 韦东普 (2008) 土壤腐殖酸与~(109)Cd、~(65)Zn及其复合存在的络合物稳定性研究. 腐植酸, 1, 1 p.
[36] Perfus-Barbeoch, L., Leonhardt, N., Vavasseur, A. and Forestier, C. (2002) Heavy metal toxicity: cadmium permeates through calcium channels and disturbs the plant water status. The Plant Journal, 32, 539-548.
[37] 周卫, 汪洪 (2007) 植物钙吸收, 转运及代谢的生理和分子机制. 植物学通报, 6, 762-778.
[38] Blume, B., Nürnberger, T., Nass, N. and Scheel, D. (2000) Receptor-mediated increase in cytoplasmic free calcium required for activation of pathogen defense in parsley. The Plant Cell Online, 12, 1425-1440.
[39] 张化生, 郭晓冬, 王萍 (2007) Ca2+与钙调素拮抗剂对辣椒幼苗抗冷性的影响. 内蒙古农业大学学报: 自然科学版, 3, 209-212.