微小RNA在消化系统恶性肿瘤中的生物学意义及进展
Biological Significances and Progresses of miRNA in Digestive System Neoplasms
DOI: 10.12677/MD.2014.42002, PDF, HTML, 下载: 3,014  浏览: 12,230 
作者: 许丽娜, 张弘:南通大学附属医院消化内科,南通
关键词: 微小RNA消化系统肿瘤生物学意义进展microRNA Digestive System Carcinoma Biological Significance Process
摘要: 微小RNA(microRNA, miRNA)是一类长度为18~25个核苷酸组成的内源性非编码小分子RNA,miRNA主要通过与靶基因序列特异性翻译抑制的相互作用在转录后水平对基因表达进行调节,从而参与多种生物学功能。与肿瘤细胞的增殖,凋亡等过程密切相关。在肿瘤的早期诊断和治疗中发挥了重要的作用。它们可以作为肿瘤诊断的潜在的生物标志物。本文就微小RNA(microRNA, miRNA)在消化道肿瘤中的生物学意义及进展做出综述。
Abstract: miRNAs are a group of endogenous non-coding small RNA molecules of 18 - 25 nt. They regulate gene expression at the posttranscriptional level through interaction with inhibition of target gene translation, involving in a variety of important biological processes. They link closely to the proliferation and apoptosis of the tumor cell and play a very important role in the early diagnosis and therapeutic. They can be regarded as a promising biomarker of carcinoma. This review tries to do a short introduction of the research progresses and biological significances of miRNA in digestive neoplasms.
文章引用:许丽娜, 张弘. 微小RNA在消化系统恶性肿瘤中的生物学意义及进展 [J]. 医学诊断, 2014, 4(2): 7-14. http://dx.doi.org/10.12677/MD.2014.42002

参考文献

[1] [1] Lee, R.C., Feinbaum, R.L. and Ambros, V. (1993) The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75, 843-854.
[2] Reinhart, B.J., Slack, F.J., Basson, M., Pasquinelli, A.E., Bettinger, J.C. and Rougvie, A.E. (2000) The 21-nucleotide let-7 RNA regulates developmental timing in Caenorhabditis elegans. Nature, 403, 901-906.
[3] Kozomara, A. and Griffiths-Jones, S. (2011) miRBase: Integrating microRNA annotation and deep-sequencing data. Nucleic Acids Research, 39, D152-D157.
[4] Chen, X., Ba, Y., Ma, L., Cai, X., Yin, Y. and Wang, K. (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Research, 18, 997-1006.
[5] Etheridge, A., Lee, I., Hood, L., Galas, D. and Wang, K. (2011) Extracellular microRNA: A new source of biomarkers. Mutation Research, 717, 85-90.
[6] Tsongalis, G.J., Calin, G., Cordelier, P., Croce, C., Monzon, F. and Szafranska-Schwarzbach, A.E. (2013) MicroRNA analysis: Is it ready for prime time? Clinical Chemistry, 59, 343-347.
[7] Weber, J.A., Baxter, D.H., Zhang, S., Huang, D.Y., Huang, K.H. and Lee, M.J. (2010) The microRNA spectrum in 12 body fluids. Clinical Chemistry, 56, 1733-1741.
[8] Dillhoff, M., Liu, J., Frankel, W., Croce, C. and Bloomston, M. (2008) MicroRNA-21 is overexpressed in pancreatic cancer and a potential predictor of survival. Journal of Gastrointestinal Surgery, 12, 2171-2176.
[9] Jiang, J., Lee, E.J., Gusev, Y. and Schmittgen, T.D. (2005) Real-time expression profiling of microRNA precursors in human cancer cell lines. Nucleic Acids Research, 33, 5394-5403.
[10] 闵自信, 杜小云, 宁启兰, 钟楠楠, 郑悦雯, 韩燕 (2013) 两种实时定量RT-PCR方法检测miRNAs表达的技术分析. 西安交通大学学报(医学版), 34, 3029-3035.
[11] Johnson, S.M., Grosshans, H., Shingara, J., Byrom, M., Jarvis, R. and Cheng, A. (2005) RAS is regulated by the let-7 microRNA family. Cell, 120, 635-647.
[12] Calin, G.A. and Croce, C.M. (2006) MicroRNA signatures in human cancers. Nature Reviews Cancer, 6, 857-866.
[13] He, L., Thomson, J.M., Hemann, M.T., Hernando-Monge, E., Mu, D. and Goodson, S. (2005) A microRNA polycistron as a potential human oncogene. Nature, 435, 828-833.
[14] Dews, M., Fox, J.L., Hultine, S., Sundaram, P., Wang, W. and Liu, Y.Y. (2010) The myc-miR-17~92 axis blunts TGF{beta} signaling and production of multiple TGF{beta}-dependent antiangiogenic factors. Cancer Research, 70, 8233-8246.
[15] Ma, L., Teruya-Feldstein, J. and Weinberg, R.A. (2007) Tumour invasion and metastasis initiated by microRNA-10b in breast cancer. Nature, 449, 682-688.
[16] 郭俊明, 肖丙秀, 钟久昌 (2010) 肿瘤相关微小RNA基因表达的表观遗传调控机制. 中国细胞生物学学报, 32, 321-325.
[17] Xing, T.J., Xu, H.T., Yu, W.Q. and Jiang, D.F. (2013) Methylation regulation of liver-specific microRNA-122 expression and its effects on the proliferation and apoptosis of hepatocellular carcinoma cells. Genetics and Molecular Research, 12, 3588-3597.
[18] Fornari, F., Gramantieri, L., Giovannini, C., Veronese, A., Ferracin, M. and Sabbioni, S. (2009) MiR-122/cyclin G1 interaction modulates p53 activity and affects doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Research, 69, 5761-5767.
[19] Szafranska, A.E., Davison, T.S., John, J., Cannon, T., Sipos, B. and Maghnouj, A. (2007) MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene, 26, 4442-4452.
[20] Ferlay, J., Shin, H.R., Bray, F., Forman, D., Mathers, C. and Parkin, D.M. (2010) Estimates of worldwide burden of cancer in 2008: GLOBOCAN 2008. International Journal of Cancer, 127, 2893-2917.
[21] Xu, J., Wu, C., Che, X., Wang, L., Yu, D. and Zhang, T. (2011) Circulating microRNAs, miR-21, miR-122, and miR223, in patients with hepatocellular carcinoma or chronic hepatitis. Molecular Carcinogenesis, 50, 136-142.
[22] Gramantieri, L., Ferracin, M., Fornari, F., Veronese, A., Sabbioni, S. and Liu, C.G. (2007) Cyclin G1 is a target of miR-122a, a microRNA frequently down-regulated in human hepatocellular carcinoma. Cancer Research, 67, 60926099.
[23] Sukata, T., Sumida, K., Kushida, M., Ogata, K., Miyata, K. and Yabushita, S. (2011) Circulating microRNAs, possible indicators of progress of rat hepatocarcinogenesis from early stages. Toxicology Letters, 200, 46-52.
[24] Yamamoto, Y., Kosaka, N., Tanaka, M., Koizumi, F., Kanai, Y. and Mizutani, T. (2009) MicroRNA-500 as a potential diagnostic marker for hepatocellular carcinoma. Biomarkers, 14, 529-538.
[25] Murakami, Y., Yasuda, T., Saigo, K., Urashima, T., Toyoda, H. and Okanoue, T. (2006) Comprehensive analysis of microRNA expression patterns in hepatocellular carcinoma and non-tumorous tissues. Oncogene, 25, 2537-2545.
[26] Jia, X.Q., Cheng, H.Q., Qian, X., Bian, C.X., Shi, Z.M. and Zhang, J.P. (2012) Lentivirus-mediated overexpression of microRNA-199a inhibits cell proliferation of human hepatocellular carcinoma. Cell Biochemistry and Biophysics, 62, 237-244.
[27] Fornari, F., Milazzo, M., Chieco, P., Negrini, M., Calin, G.A. and Grazi, G.L. (2010) MiR-199a-3p regulates mTOR and c-Met to influence the doxorubicin sensitivity of human hepatocarcinoma cells. Cancer Research, 70, 5184-5193.
[28] Kim, S., Lee, U.J., Kim, M.N., Lee, E.J., Kim, J.Y. and Lee, M.Y. (2008) MicroRNA miR-199a* regulates the MET proto-oncogene and the downstream extracellular signal-regulated kinase 2 (ERK2). The Journal of Biological Chemistry, 283, 18158-18166.
[29] Wang, C., Song, B., Song, W., Liu, J., Sun, A. and Wu, D. (2011) Underexpressed microRNA-199b-5p targets hypoxia-inducible factor-1alpha in hepatocellular carcinoma and predicts prognosis of hepatocellular carcinoma patients. Journal of Gastroenterology and Hepatology, 26, 1630-1637.
[30] Fornari, F., Milazzo, M., Chieco, P., Negrini, M., Marasco, E. and Capranico, G. (2012) In hepatocellular carcinoma miR-519d is up-regulated by p53 and DNA hypomethylation and targets CDKN1A/p21, PTEN, AKT3 and TIMP2. The Journal of Pathology, 227, 275-285.
[31] Henry, J.C., Park, J.K., Jiang, J., Kim, J.H., Nagorney, D.M. and Roberts, L.R. (2010) miR-199a-3p targets CD44 and reduces proliferation of CD44 positive hepatocellular carcinoma cell lines. Biochemical and Biophysical Research Communications, 403, 120-125.
[32] de Krijger, I., Mekenkamp, L.J., Punt, C.J. and Nagtegaal, I.D. (2011) MicroRNAs in colorectal cancer metastasis. The Journal of Pathology, 224, 438-447.
[33] Zheng, Y., Cui, L., Sun, W., Zhou, H., Yuan, X. and Huo, M. (2011) MicroRNA-21 is a new marker of circulating tumor cells in gastric cancer patients. Cancer Biomark, 10, 71-77.
[34] Song, J., Bai, Z., Han, W., Zhang, J., Meng, H. and Bi, J. (2012) Identification of suitable reference genes for qPCR analysis of serum microRNA in gastric cancer patients. Digestive Diseases and Sciences, 57, 897-904.
[35] Liu, R., Liao, J., Yang, M., Shi, Y., Peng, Y. and Wang, Y. (2012) Circulating miR-155 expression in plasma: A potential biomarker for early diagnosis of esophageal cancer in humans. Journal of Toxicology and Environmental Health A, 75, 1154-1162.
[36] 蒋敏, 顾国浩, 张静, 陈旭 (2013) 食管癌患者外周血单个核细胞中miR-21 的表达. 中国现代医学杂志, 34-38.
[37] Gao, L., He, S.B. and Li, D.C. (2014) Effects of miR-16 plus CA19-9 detections on pancreatic cancer diagnostic performance. Clinical Laboratory, 60, 73-77.
[38] Liu, A.M., Yao, T.J., Wang, W., Wong, K.F., Lee, N.P. and Fan, S.T. (2012) Circulating miR-15b and miR-130b in serum as potential markers for detecting hepatocellular carcinoma: a retrospective cohort study. BMJ Open, 2, e000825.
[39] Visone, R., Pallante, P., Vecchione, A., Cirombella, R., Ferracin, M. and Ferraro, A. (2007) Specific microRNAs are downregulated in human thyroid anaplastic carcinomas. Oncogene, 26, 7590-7595.
[40] Nam, E.J., Yoon, H., Kim, S.W., Kim, H., Kim, Y.T. and Kim, J.H. (2008) MicroRNA expression profiles in serous ovarian carcinoma. Clinical Cancer Research, 14, 2690-2695.
[41] Park, J.K., Lee, E.J., Esau, C. and Schmittgen, T.D. (2009) Antisense inhibition of microRNA-21 or -221 arrests cell cycle, induces apoptosis, and sensitizes the effects of gemcitabine in pancreatic adenocarcinoma. Pancreas, 38, e190e199.
[42] Huang, J.W., Wang, Y., Dhillon, K.K., Calses, P., Villegas, E. and Mitchell, P.S. (2013) Systematic screen identifies miRNAs that target RAD51 and RAD51D to enhance chemosensitivity. Molecular Cancer Research, 11, 1564-1573.
[43] Ye, J., Wu, X., Wu, D., Wu, P., Ni, C. and Zhang, Z. (2013) miRNA-27b targets vascular endothelial growth factor C to inhibit tumor progression and angiogenesis in colorectal cancer. PLoS One, 8, e60687.
[44] Nakajima, G., Hayashi, K., Xi, Y., Kudo, K., Uchida, K. and Takasaki, K. (2006) Non-coding MicroRNAs hsa-let-7g and hsa-miR-181b are associated with Chemoresponse to S-1 in Colon Cancer. Cancer Genomics Proteomics, 3, 317324.
[45] Kurashige, J., Kamohara, H., Watanabe, M., Tanaka, Y., Kinoshita, K. and Saito, S. (2012) Serum microRNA-21 is a novel biomarker in patients with esophageal squamous cell carcinoma. Journal of Surgical Oncology, 106, 188-192.
[46] Castoldi, M., Vujic Spasic, M., Altamura, S., Elmen, J., Lindow, M. and Kiss, J. (2011) The liver-specific microRNA miR-122 controls systemic iron homeostasis in mice. Journal of Clinical Investment, 121, 1386-1396.