计算机科学与应用  >> Vol. 4 No. 8 (August 2014)

实时目标跟踪研究
Study on Real-Time Target Tracking

DOI: 10.12677/CSA.2014.48023, PDF, HTML, 下载: 3,790  浏览: 7,667 

作者: 胡绍华:北京强度环境研究所,北京;陈 勇:中石油长城钻探工程有限公司录井公司,盘锦;何信华:Beijing Institute of Astronautical Systems Engineering, Beijing;沈志军:北京宇航系统工程研究所,北京

关键词: 目标检测目标跟踪背景减除目标匹配Object Detection Object Tracking Background Subtraction Object Matching

摘要: 针对图像序列中运动目标检测、跟踪的难点问题,提出了一种实时运动目标检测与跟踪算法。该算法基于自适应背景建模,获取运动目标背景模型和前景图像,从而实现运动目标检测;通过建立运动目标的位置、大小、形状以及颜色分布模型,构造运动目标全局匹配函数,结合目标活力特征,实现多运动目标连续匹配和跟踪。实验结果表明,相对于传统的运动目标跟踪方法,本文方法明显减少了运算时间,增强了环境适应性,实现了复杂场景下运动目标的准确检测和稳定跟踪,对非刚性目标的形变、旋转具有较强的鲁棒性。
Abstract: In this paper, we propose a real-time mobile target detection and tracking algorithm for challenges of mobile target detection and tracking in sequential images. This algorithm based on the adaptive background modeling obtains background model and front-view images of mobile targets, which is the way to achieve target detection. Continuous matching and tracking of multiple mobile targets are realized through constructing position, size, shape and color distribution of the mobile targets, defining a global matching function for those targets, and associating their vitality characteristics. It is demonstrated by experiments that the algorithm presented in this paper, compared to the traditional methods of mobile target tracking, significantly reduces the computation time, improves adaptive feature to environments, achieves accurate detection and robust tracking of mobile targets in complex environments, and shows strong robustness to deformation and rotation of non-rigid targets.

文章引用: 胡绍华, 陈勇, 何信华, 沈志军. 实时目标跟踪研究[J]. 计算机科学与应用, 2014, 4(8): 158-168. http://dx.doi.org/10.12677/CSA.2014.48023

参考文献

[1] Li, D.W., Xu, L.H. and Goodman, E.D. (2013) Illumination-robust foreground detection in a video surveillance system. IEEE Transactions on Circuits and Systems for Video Technology, 23, 1637-1650.
[2] Afonso, M.V., Nascimento, J.C. and Marques, J.S. (2014) Automatic estimation of multiple motion fields from video sequences using a region matching based approach. IEEE Transactions on Multimedia, 16, 1-14.
[3] Cuevas, C. and Garcia, N. (2013) Efficient moving object detection for lightweight applications on smart cameras. IEEE Transactions on Circuits and Systems for Video Technology, 23, 1-14.
[4] Sakaino, H. (2013) Video-based tracking, learning, and recognition method for multiple moving objects. IEEE Transactions on Circuits and Systems for Video Technology, 23, 1661-1674.
[5] Benosman, R., Ieng, S.-H., Clercq, C., Bartolozzi, C. and Srinivasan, M. (2012) Asynchronous frameless event-based optical flow. Neural Networks, 27, 32-37.
[6] Salmen, J., Caup, L. and Igel, C. (2011) Real-time estimation of optical flow based on optimized Haar wavelet features. Proceedings of the 6th International Conference on Evolutionary Multi-Criterion Optimization, Ouro Preto, 5-8 April 2011.
[7] Liu, R.M. and Yang, M. (2011) Tracking multiple feature in infrared image with mean-shift. Proceedings of the 7th International Conference on Advanced Intelligent Computing, Zhengzhou, 11-14 August 2011.
[8] 蔺海峰, 马宇峰, 宋涛 (2010) 基于SIFT特征目标跟踪算法研究. 自动化学报, 8, 1204-1208.
[9] Liu, Z., Feng, G.Y. and Hu, D.W. (2012) Robust mean shift tracking with background information. Proceedings of the 9th International Conference on Advances in Neural Networks, Shenyang, 11-14 July 2012.
[10] Wang, Z.H. and Hong, K. (2013) A new approach for adaptive background object tracking based on Kalman filter and mean shift. Proceedings of the 2013 Research in Adaptive and Convergent Systems, Montreal, 1-4 October 2013.
[11] Ortegon-Aguilar, J. and Bayro-Corrochano, E. (2007) Particle filter tracking without dynamics. Applied Bionics and Biomechanics, 4, 169-177.
[12] Karasulu, B. and Korukoglu, S. (2012) Moving object detection and tracking by using annealed background subtraction method in videos: Performance optimization. Expert Systems with Applications: An International Journal, 39, 33-43.
[13] 梁华 (2009) 多摄像机视频监控中运动目标检测与跟踪. 博士论文, 国防科技大学, 长沙.
[14] Hoseinnezhad, R., Vo, B.-N. and Vu, T.N. (2011) Visual tracking of multiple targets by multi-bernoulli filtering of background subtracted image data. Proceedings of the Second international conference on Advances in Swarm Intelligence, Chongqing, 12-15 June 2011.