阴–非离子混合表面活性剂对紫花苜蓿吸收土壤中有机氯农药的影响
Effect of Anionic-Nonionic Mixed Surfactants on Uptake of Organochlorine Pesticides from Soil by Alfalfa
DOI: 10.12677/AEP.2014.46029, PDF, HTML, 下载: 2,755  浏览: 9,535  国家自然科学基金支持
作者: 林 静, 周溶冰, 吴卫红, 谢正苗:杭州电子科技大学环境科学与工程研究所,杭州
关键词: 混合表面活性剂有机氯农药植物修复Mixed Surfactant Organochlorine Pesticide Phytoremediation
摘要: 采用盆栽试验法,研究了阴–非离子混合表面活性剂 SDBS-TX100、SDBS-TW80的配比与浓度对紫花苜蓿吸收有机氯农药(OCPs)的影响。结果发现,在SDBS与TX100、SDBS与TW80质量比(以下简称“配比”)为0:10,1:9,5:5,9:1时,总浓度在50~1000 mg•L−1能促进紫花苜蓿吸收积累OCPs,土壤OCPs去除率分别保持在50%、45%以上。混合表面活性剂对增强紫花苜蓿吸收OCPs的程度与混合表面活性剂类型、配比及浓度等密切相关。SDBS-TX100配比1:9对紫花苜蓿吸收OCPs有最大促进作用,且对植物生长无明显危害。SDBS-TW80在浓度50~300 mg•L−1时促进紫花苜蓿吸收OCPs且对植物无胁迫。去除土壤OCPs的研究中,施加SDBS-TX100系列表现优于SDBS-TW80系列。
Abstract: The uptake of organochlorine pesticides (OCPs) by alfalfa in the presence of anionic-nonionic mixed surfactants SDBS-TX100 & SDBS-TW80 was studied in soils by pot experiment in a greenhouse. The results show that SDBS-TX100 & SDBS-TW80 mixtures with mass ratios of 0:10, 1:9, 5:5, and 9:1 could enhance the uptake of OCPs by alfalfa with the total concentration of 50 - 1000 mg•L−1, ac-cording to that the removal efficiency of OCPs keeps in 50% & 45% and more by alfalfa in soil. The mixed surfactants enhanced uptake of OCPs by alfalfa was closely related to the mixed surfactant form, as well as the ratio and concentration. The SDBS-TX100 mixture with a mass ratio of SDBS to TX100 at 1:9 had the greatest capacity in enhancing the uptake of OCPs, and no harm to plant growth. The SDBS-TW80 which concentration in 50 - 300 mg•L−1 promoted alfalfa’s absorption and had no harm to plant. In the research, SDBS-TX100’s performance is better than the SDBS-TW80.
文章引用:林静, 周溶冰, 吴卫红, 谢正苗. 阴–非离子混合表面活性剂对紫花苜蓿吸收土壤中有机氯农药的影响[J]. 环境保护前沿, 2014, 4(6): 211-219. http://dx.doi.org/10.12677/AEP.2014.46029

参考文献

[1] Gong, Z.M., Tao, S. and Xu, F.L. (2004) Level and distribution of DDT in surface soils from Tianjin. Chemosphere, 54, 1247-1253.
[2] Zhou, R.B., Zhu, L.Z., Yang, K., et al. (2006) Distribution of organochlorine pesticides in surface water and sediment from Qiantang River. Journal of Hazardous Materials, A137, 68-75.
[3] 章海波, 骆永明, 滕应等 (2006) 珠江三角洲地区典型类型土壤中DDT残留及其潜在风险. 土壤, 38, 547-551.
[4] Alkorta, I. and Garbisu, C. (2001) Phytoremediation of organic contaminants in soils. Bioresource Technology, 79, 273-276.
[5] Rauch, B.J., Bellinder, R.R. and Brainard, D.C. (2007) Dissipation of fomesafen in New York State soils and potential to cause carryover injury to sweet corn. Weed Technology, 21, 206-212.
[6] Grossmann, K., Niggewg, R., Christiansen, N., et al. (2010) The herbicide saflufenacil (KixorTM) is a new inhibitor of protoporphyrinogen IX oxidase activity. Weed Science, 58, 1-9.
[7] 高彦征, 凌婉婷, 朱利中等 (2005) 黑麦草对多环芳烃污染土壤的修复作用及机制. 农业环境科学学报, 24, 498- 502.
[8] 张晶, 汪勇, 林先贵等 (2009) 植物间作系统在多环芳烃污染农田修复中的应用. 安全与环境学报, 9, 76-80.
[9] Schnoor, J.L., Licht, L.A., Mccutcheon, S.C., et al. (1995) Phytoremediation of organic and nutrient contaminants. Environmental Science & Technology, 29, 318A-323A.
[10] 林道辉, 朱利中, 高彦征 (2003) 土壤有机污染的植物修复及影响因素. 应用生态学报, 14, 1799-1803.
[11] Gao, Y.Z. and Zhu, L.Z. (2003) Phytoremediation and its models for organic contaminated soils. Journal of Environmental Sciences, 15, 302-310.
[12] Soltani, N., Shropshire, C. and Sikkema, P.H. (2010) Sensitivity of leguminous crops to saflufenacil. Weed Technology, 24, 143-146.
[13] 梁治其, 宗惠娟, 李金华 (2002) 功能性表面活性剂. 中国轻工业出版, 北京, 1-146.
[14] Pilon-Smits, E. (2005) Phytoremediation. Annual Review of Plant Biology, 56, 15-39.
[15] Gao, Y.Z., Ling, W.T., Zhu, L.Z., Zhao, B.W. and Zheng, Q.S. (2007) Surfactant-enhanced phytoremediation of soils contaminated with hydrophobic organic contaminants: Potential and assessment. Pedosphere, 17, 409-418.
[16] Wu, N.Y., Zhang, S.Z., Huang, H.L., Shan, X.Q., Christie, P. and Wang, Y.S. (2008) DDT uptake by arbuscular mycorrhizal alfalfa and depletion in soil as influenced by soil application of a non-ionic surfactant. Environmental Pollution, 151, 569-575.
[17] Yang, K., Zhu, L.Z. and Xing, B.S. (2006) Enhanced soil washing of phenanthrene by mixed solutions of TX100 and SDBS. Environmental Science & Technology, 40, 4274-4280.
[18] Zhou, W.J. and Zhu, L.Z. (2007) Enhanced desorption of phenanthrene from contaminated soil using anionic/nonionic mixed surfactant. Environmental Pollution, 147, 350-357.
[19] Zhao, B.W., Zhu, L.Z., Li, W. and Chen, B.L. (2005) Solubilization and biodegradation of phenanthrene in mixed anionic-nonionic surfactant solutions. Chemosphere, 58, 33-40.
[20] 朱利中, 冯少良 (2002) 混合表面活性剂对多环芳烃的增溶作用及机理. 环境科学学报, 6, 774-778.
[21] Zhou, W.J. and Zhu, L.Z. (2008) Enhanced soil flushing of phenanthrene by anionic-nonionic mixed surfactant. Water Research, 42, 101-108.
[22] 周溶冰, 陈建军, 尤胜武, 谢正苗 (2011) 混合表面活性剂对植物吸收有机氯农药的影响. 环境科学学报, 9, 2042-2047.
[23] Hinsinger, P. (1998) How do plant roots acquire mineral nutrients? Chemical processes involved in the rhizosphere. Advances in Agronomy, 64, 225-265.
[24] 何艳, 徐建民, 李兆君 (2004) 有机污染物根际胁迫及根际修复研究进展. 土壤通报, 5, 658-662.
[25] 赵新华, 马伟芳, 孙井梅, 张蕾 (2006) 玉米修复河道疏浚底泥重金属–有机复合污染的根际效应. 农业环境科学学报, 1, 100-106.
[26] 王靖, 张忠智, 苏幼明, 魏小芳, 何峰, 贺伟 (2008) 石油污染土壤植物修复根际效应研究. 石油化工高等学校学报, 2, 36-40.