基于高密度数值方法的水体油气储层断面的勘探
Geological Survey of Hydrocarbon Reservoirs Water Section Based on High Density Numerical Analysis Method
DOI: 10.12677/AG.2015.54026, PDF, HTML, XML, 下载: 2,369  浏览: 8,577 
作者: 王明月:江苏省邳州市规划局,江苏 邳州;施以兵:江苏省地质测绘院,江苏 南京
关键词: 油气勘探井位选址高密度电阻法数值方法Water Fault Fractured Zone Hydrocarbon Reservoirs High Density Resistivity Method Numerical Method
摘要: 水体断层破碎带严重影响着水体下资源开采安全,因此对水体断面的地质调查是资源勘探技术中最基础的过程。通过水底断面的地质调查,能够更好地对油气储层开采中可能遇到的地质灾害进行评估,预测可能危及钻井安全的地质因素。高密度电阻率法具有智能化、分辨率高以及一次布设、效率高等特点,与传统电阻率法相比勘探能力显著提高。本文将高密度数值分析的方法应用于油气储层地质中水体断层调查,通过查明水体断面勘探线上河床及两岸基岩起伏形态及风化层度,分析了电法工作在油气储层地质中的干扰类型和干扰来源,重点对高密度方法所采得数据采用数值计算处理。研究结果表明,高密度数值分析方法能够有效摸清水体断面的工程地质概况,对于水体下资源开采中可能遇到的地质灾害开展了深入分析,具有重要的应用价值。
Abstract: Water fault fractured zone is significant to the resources mining safety under water, and the geo-logical survey of water section is the basic process of resources exploration technology. It can evaluate the potential geological disaster in the hydrocarbon reservoirs mining and forecast the geological factors that endanger the drilling safety by the means of geological survey of water sec-tion. Meanwhile, compared with the traditional resistivity method, high density resistivity method with the characteristics of intellectualization, high resolution, one-time layout and high efficiency, significantly increases the exploration capability. This paper applied the high density numerical analysis method in the geological survey of hydrocarbon reservoirs water section, by ascertaining the fluctuating form of bedrock and the degree of weathered layer, analyzed the interfere type and source of resistivity method in the hydrocarbon reservoirs, and focused on the numerical analysis in the data processing. The results showed that the high density numerical analysis method can effectively ascertain the geological situation of hydrocarbon reservoirs water section. Then, the potential geological disaster in the resources exploration process was analyzed and the applicability of this method was proved.
文章引用:王明月, 施以兵. 基于高密度数值方法的水体油气储层断面的勘探[J]. 地球科学前沿, 2015, 5(4): 265-270. http://dx.doi.org/10.12677/AG.2015.54026

参考文献

[1] Spiess, F.N. (1987) Seafloor research and ocean technology. MTS Journal, 21, 5-17.
[2] Fish, J.P. and Carr, H.A. (2001) Sound reflections (advanced applications of side scan sonar). Lower Cape Publishing, Orleans.
[3] Dybedal J. Kongsberg Defence & Aerospace AS (2003) Training course TOPASPS 018 parametric sub-bottom profiler sys-tem.
[4] Dybedal J. Kongsberg Defence & Aerospace AS (2002) TOPASPS 018 operator manual.
[5] 利奕年, 罗延钟 (2006) 高密度电法视电阻率数据预处理算法. 物探化探计算技术, 4, 328-331.
[6] 祁民, 张宝林, 梁光河 (2006) 高密度电法的三维数据场可视化. 地球物理学进展, 3, 981-986.
[7] 董延朋, 万海 (2006) 高密度电阻率法在堤坝洞穴探测中的应用. 大坝与安全, 2, 40-42.
[8] 方前发, 张宏兵 (2006) 电法勘探方法在水文和工程地质中的应用. 大众科技, 4, 29-31.
[9] 郭君科, 田绍义, 吕绍龙 (2005) 高密度电阻率法技术与应用. 黑龙江水利科技, 1, 116-117.
[10] 秦正 (2005) 高密度电阻率法在工程勘察中的应用. 物探装备, 3, 205-206.
[11] 陈建洲, 戴梅芳, 张永胜 (2006) 高密度电法在江仓煤炭勘查中的应用. 西部探矿工程, 4, 129-131.
[12] 杜彦军, 苗庆库, 刘黎东, 郭志强, 张继令 (2006) 采用综合物探技术探测路基下洞穴. 岩土工程界, 4, 66-68.
[13] 张胜, 韩许恒, 李秉强, 脱军第, 吴富春 (2005) 高密度电法在采空区勘测中的应用. 灾害学, 4, 64-66.
[14] 罗延中, 万乐, 董浩斌 (2004) 不平地形条件下高密度电阻率法的2.5维反演. 地质与勘探, Z1, 172-175.