材料科学  >> Vol. 5 No. 4 (July 2015)

Ni含量梯度变化的Cu-Ni合金力学性能分子动力学模拟
Molecular Dynamics Simulations on Mechanical Properties of Cu-Ni Alloys with Gradient Distribution of Ni Content

DOI: 10.12677/MS.2015.54021, PDF, HTML, XML, 下载: 1,880  浏览: 5,738  国家自然科学基金支持

作者: 黄鸿翔, 陈尚达, 吴勇芝:湘潭大学,材料科学与工程学院,湖南 湘潭

关键词: 分子动力学Cu-Ni合金三叉晶界屈服强度Molecular Dynamics Cu-Ni Alloys Triple Junction Yield Strength

摘要: 应用分子动力学方法模拟Ni成分梯度变化的纳米晶Cu-Ni合金在单向拉伸应变载荷下,合金的力学性能与微观结构变化过程。结果表明,随着Ni含量梯度的增加,Cu-Ni合金的弹性杨氏模量逐渐增加,而且Ni浓度梯度的改变会对合金的屈服强度以及延展性造成一定的影响。垂直于浓度梯度方向拉伸时,屈服阶段过后,合金内部裂纹首先在三叉晶界处产生,然后出现在Ni含量接近50%的区域。Ni浓度梯度非常大时,富Cu区域也较容易产生裂纹。
Abstract: Molecular dynamics (MD) simulations of nanocrystalline Cu-Ni alloys with different gradient dis-tribution of Ni content under uniaxial tensile straining were performed to study their deformation behaviors and mechanical properties. The results indicate that, with the increase of concentration gradient of the Ni, the elasticity young’s modulus of Cu-Ni alloy increases gradually, and the yield strength and ductility of the alloy were impacted by the change of Ni content. When tensile direc-tion perpendicular to the direction of concentration gradient, the cracks appeared in triple junction firstly after yield stage, and then in the area of Ni content close to 50 percent. When concentration gradient of Ni is very high, rich Cu area will crack easily.

文章引用: 黄鸿翔, 陈尚达, 吴勇芝. Ni含量梯度变化的Cu-Ni合金力学性能分子动力学模拟[J]. 材料科学, 2015, 5(4): 151-157. http://dx.doi.org/10.12677/MS.2015.54021

参考文献

[1] Baskaran, I., Narayanan, T.S. and Stephen, A. (2006) Pulsed electrodeposition of nanocrystalline Cu-Ni alloy films and evaluation of their characteristic properties. Materials Letters, 60, 1990-1995. http://dx.doi.org/10.1016/j.matlet.2005.12.065
[2] 熊惟皓, 刘锦文 (1998) 合金化与形变热处理对铜合金弹性模量的影响. 华中理工大学学报, S1, 19-21.
[3] 王俊陞 (1979) 合金化元素对弹性模量的影响. 稀有金属, 04, 1-11.
[4] Arsenault, R.J. (1969) Solid solution strengthening and weakening of b.c.c. solid solutions. Acta Mater, 17, 1291-1297. http://dx.doi.org/10.1016/0001-6160(69)90144-8
[5] Pink, E. and Arsenault R.J. (1972) Solid-solution strengthening and weakening of vanadium-titanium alloys. Metal Science, 6, 1-6. http://dx.doi.org/10.1179/030634572790445777
[6] Peters, B.C. and Hendrickson, A.A. (1970) Solid solution Nb-Mo alloy strengthening in Nb-Ta and single crystals. Metallurgical Transactions, 1, 2271-2280. http://dx.doi.org/10.1007/BF02643445
[7] Medvedeva, N.I., Gornostyrev, Y.N. and Freeman, A.J. (2005) Solid solu-tion softening in bcc Mo alloys: Effect of transition-metal additions on dislocation structure and mobility. Physical Review B, 72, 1-9. http://dx.doi.org/10.1103/physrevb.72.134107
[8] 刘志林, 林成 (2008) 合金电子结构参数统计值及合金力学性能计算. 冶金工业出版社, 北京.
[9] 李飞, 王文静, 王月, 邵善威 (2014) Mg-Al合金固溶强化的电子理论研究. 兵器材料科学与工程, 04, 55-57.
[10] Zhu, X.Y., Liu, X.J., Zong, R.L., et al. (2010) Microstructure and me-chanical properties of nanoscale Cu/Ni multilayers. Materials Science and Engineering: A, 527, 1243-1248. http://dx.doi.org/10.1016/j.msea.2009.09.058